Skip to main content

Radiofrequency Energy for Catheter Ablative Procedures

  • Chapter
Catheter Ablation of Cardiac Arrhythmias

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 78))

Abstract

Radiofrequency energy is generally considered to range from 150,000 cycles per second or hertz (Hz) or 150 kHz to about 1,000,000 Hz or one megahertz (MHz). There are no finite limits to the radiofrequency range, which can extend up to the infrared range. One terminology used in medicine is to provide specific designations for the various ranges of radiofrequency energy according to their use (table 7–1). All frequencies between 100 kHz and 4 MHz can cut, coagulate, and desiccate tissue, and there appears to be little significant differences in performance. Frequencies below 100 kHz can stimulate muscles and nerves and are not used in electrosurgery. It is difficult to confine electrical currents to wires at frequencies above three to four MHz. Therefore, energy in the radiofrequency range, usually 500 kHz to 750 kHz are most commonly employed in electrosurgical devices. This type of device is often mistakenly called electrocautery. In electrocautery, electrical current not in the radiofrequency range remains in the wire that is heated by the current passing through the wire. In electrosurgery, the electrical current actually passes through the tissue. The radiofrequency current is delivered between an active electrode and a dispersive electrode, usually a large conductive pad placed on the patients skin or the radiofrequency current may pass between bipolar electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Marcus FI: The use of radiofrequency energy for intracardiac ablation; historical perspectives and results of experiments in animals. In: Non-Pharmacological Therapy of Tachyarrhythmias, G Breithardt, M Borggrefe, DP Zipes, eds. Mt. Kisko, New York: Futura Publishing Co, 1987.

    Google Scholar 

  2. Barlow DE: Endoscopic applications of electrosurgery: A review of basic principles. Gastrointestinal Endoscopy 28: 73–76, 1982.

    Article  PubMed  CAS  Google Scholar 

  3. d’Arsonval: Action physiologique des courants alternatifs a grand frequence. Arch Physiol Norm Path 5: 401-408, 1893.

    Google Scholar 

  4. d’Arsonval: Action physiologique des courants alternatifs a grand frequence. Arch Physiol Norm Path 5: 789–790, 1893.

    Google Scholar 

  5. Geddes LA, Silva LF, DeWitt DP and Pearce JA: What’s new in electrosurgical instrumentation? Medical Instrumentation 11: 355–359, 1977.

    PubMed  CAS  Google Scholar 

  6. Geddes LA, Tacker WA and Cabler P: A new electrical hazard associated with the electrocautery. Medical Instrumentation 9: 112–113, 1975.

    PubMed  CAS  Google Scholar 

  7. Hungerbuhler RF, Swope JP and Reves JG: Ventricular fibrillation associated with the use of electrocautery. JAMA 230: 432–435, 1974.

    Article  PubMed  CAS  Google Scholar 

  8. Tucker RD, Schmitt OH, Sievert CE and Silvis SE: Demodulated low frequency currents from electrosurgical procedures. Surg Gynecol Obstet 159: 39–43, 1984.

    PubMed  CAS  Google Scholar 

  9. Meijler FL, Wieberdink, J and Durrer D: L’importance de la position des electrodes stimulat-rices au cours du traitement d’un bloc auriculo-ventriculaire postoperatif total. Arch des Mal du Coeur 55: 690–698, 1962.

    Google Scholar 

  10. Brutsaert D: Influence of different stimulation frequencies on the cardiac output at rest and during moderate exercise in dogs with chronic atrioventricular heart block. Acta Cardiologica 20: 469–498, 1965.

    PubMed  CAS  Google Scholar 

  11. Wieberdink J: Experimental production of permanent heart block (total or bundle branch block) without circulatory arrest or extracorporeal circulation. Thorax 21: 401-404, 1966.

    Article  PubMed  CAS  Google Scholar 

  12. Macdonald IB: A simple method of producing experimental heart block in dogs. J Thorac Cardiovasc Surg 53: 695–697, 1967.

    PubMed  CAS  Google Scholar 

  13. Smythe NPD and Magassy CL: Experimental heart block in the dog: An improved method. J Thorac Cardiovasc Surg 59: 201–205, 1970.

    Google Scholar 

  14. Shiang HH, Kupersmith J, Wiemann GF, Rhee CY and Litwak RS: Creating permanent complete heart block by indirect cauterization without atriotomy. Am J Physiol 233: H723-H726, 1977.

    PubMed  CAS  Google Scholar 

  15. Fontaine G, Lechat PH, Cansell A, Guiraudon G, Linares-Cruz E, Koulibali M, Chomette G, Auriol M, and Grosgogeat Y: Advances in the treatment of cardiac arrhythmias in the last decade: Definition and role of ablative techniques. In: Ablation in cardiac arrhythmias, G Fontaine, MM Scheinman, eds. Mt. Kisko, New York: Futura Publishing Co, pp 5–20, 1987.

    Google Scholar 

  16. Huang SK, Bharati S, Graham AR, Lev M, Marcus FI and Odell RC: Closed-chest catheter desiccation of the atrioventricular junction using radiofrequency energy — A new method of catheter ablation. J.4CC 9: 349–358, 1987.

    CAS  Google Scholar 

  17. Huang SK, Bharati S, Lev M, Marcus FI: Pathological and electrophysiological observations of chronic atrioventricular block induced by closed-chest ablation with radiofrequency energy. PACE 10: 805–816, 1987.

    PubMed  CAS  Google Scholar 

  18. Marcus FI, Blouin LT, Wharton K and Bharati S: Electrophysiological and pathological assessment of chronic first degree atrioventricular block caused by closed-chest catheter ablation with radiofrequency. JACC 9(2): 95A (abstract), 1987.

    Google Scholar 

  19. Lavergne T, Guize L, Letleuzey J-Y, Cousin M-T, Carcone P, Geslin J, Khaznadar G, Couetil J-P and Ourbak P: Transvenous ablation of the atrio-ventricular junction in human with high-frequency energy. JACC 9(2): 99A (abstract), 1987.

    Google Scholar 

  20. Borggrefe M, Budde T, Podczfck A, Breithardt G: Application of transvenous high frequency alternating current ablation in humans. PACE 10(3): Part I, 603 (abstract), 1987.

    Google Scholar 

  21. Huang SK, Graham AR, Lee MA, Gorman G: Closed-chest catheter ablation of the canine coronary sinus using radiofrequency energy. PACE 10(2): 410 (abstract), 1987.

    Google Scholar 

  22. Langberg J, Griffin JC, Bharati S, Lev M, Chin M, Scheinman MM: Radiofrequency catheter ablation in the coronary sinus. JACC 9(2): 99Q (abstract), 1987.

    Google Scholar 

  23. Jackman WM, Kuck K-H, Naccarelli GV, Pitha J and Carmen L: Catheter ablation at the mitral annulus using RF current in canines. PACE 10(2): 410 (abstract), 1987.

    Google Scholar 

  24. Hoyt RH, Huang SK, Marcus FI, Odell RC: Factors influencing trans-catheter radiofrequency ablation of the myocardium. J Appl Cardiol 1: 469–487, 1986.

    Google Scholar 

  25. Huang SK, Graham AR, Hoyt RH and Odell RC: Transcatheter desiccation of the canine left ventricle using radiofrequency energy — a pilot study. Am Heart J (in press).

    Google Scholar 

  26. Naccarelli GV, Kuck K-H, Pitha J, Carmen L, Jackman WM: Selective catheter ablation of canine ventricular myocardium with radiofrequency current. JACC 9: 2, 1987.

    Google Scholar 

  27. Saksena S, Furman R, Gadhoke A and Osypka P: Feasibility of radiofrequency ablation of supraventricular and ventricular tachyarrhythmias. PACE 10: 410 (abstract), 1987.

    Google Scholar 

  28. Arai Y, Masani F, Kato H, Sasagawa Y, Shibata A, Eguchi S, Nemoto K, Makino H, Saitoh Y: Experimental study of myocardial ablation by radio-frequency current. PACE 10: 426 (abstract), 1987.

    Google Scholar 

  29. Petitier H, Polu JM, Dodinot B, Sommelet P, Mathieu P and Faivre G: Tachycardie ventriculaire irreductible traitement par electrocoagulation apres localisation du foyer. Arch Mal du Coeur 64: 331–351, 1971.

    CAS  Google Scholar 

  30. Klein H, Schroder E, Trappe HJ and Kuhn E: Catheter ablation of ventricular tachycardia — Special emphasis on the incessant form of tachycardia. PACE 427 (abstract), 1987.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Martinus Nijhoff Publishing, Boston

About this chapter

Cite this chapter

Marcus, F.I. (1988). Radiofrequency Energy for Catheter Ablative Procedures. In: Scheinman, M.M. (eds) Catheter Ablation of Cardiac Arrhythmias. Developments in Cardiovascular Medicine, vol 78. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1765-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1765-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8990-6

  • Online ISBN: 978-1-4613-1765-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics