Skip to main content

Control of human breast cancer by estrogen, growth factors, and oncogenes

  • Chapter
Breast Cancer: Cellular and Molecular Biology

Part of the book series: Cancer Treatment and Research ((CTAR,volume 40))

Abstract

Cellular mechanisms of control of cancer proliferation have received considerable attention. In particular, recent studies have provided unifying links among growth factors [1], their receptors, and oncogene products. Neoplastic growth of leukemia, prostate carcinoma, endometrial carcinoma, and breast carcinoma has long been recognized to be under endocrine control by steroid hormones. Of particular note are the observations that receptors for estrogens, glucocorticoids, vitamin D metabolites, and progestins contain amino acid sequences that are highly homologous to the erb A oncogene (Chapter by G. Stack, et al., this volume).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goustin AS, Leof EB, Shipley GD, Moses HL: Growth factors and cancer. Cancer Res 46: 1015–1029, 1986.

    PubMed  CAS  Google Scholar 

  2. Lippman ME: Endocrine responsive cancers of man. In: Textbook of Endocrinology, Williams RH (ed), Philadelphia, W.B. Saunders Co. 1985, pp 1309–1326.

    Google Scholar 

  3. The cancer and steroid hormone study of the centers for disease control and the National Institute of Child Health and Human Development. Oral contraceptive use and the risk of breast cancer. New Eng J Med 315: 405–411, 1986.

    Google Scholar 

  4. Ross GT, Vande Wiele RL, Frantz AG: The ovaries and the Breasts. In: Textbook of Endocrinology, Williams, RH (ed) W.B. Saunders Co., Philadelphia, 1981, pp 355–411.

    Google Scholar 

  5. Eidne KA, Flanagan CA, Millar RP: Gonadotropin—releasing hormone binding sites in human breast carcinoma. Science 229: 989–991, 1985.

    PubMed  CAS  Google Scholar 

  6. Ikeda T, Danielpour D, Sirbasku BA: Isolation and properties of endocrine and autocrine type mammary tumor cell growth factors (estromedins). In: Bresciani F, King RJB, Lippman ME, Namer M, Raynaud JP (eds). Progress in Cancer Research and Therapy, Vol. 31, Raven Press, New York, 1983, pp 171–186.

    Google Scholar 

  7. Soto A, Sonnenschein, C: Cell proliferation of estrogen-sensitive cells: the case for negative control. Endocrine Reviews, 8: 44–52, 1987.

    PubMed  CAS  Google Scholar 

  8. Lykkesfeldt AE, Briand, P: Indirect mechanism of estradiol stimulation of cell proliferation of human breast cancer cell lines. Br J Cancer 53: 29–35, 1986.

    PubMed  CAS  Google Scholar 

  9. Brooks SC, Locke ER, Soule HD: Estrogen receptor in a human breast cell line (MCF-7) from breast carcinoma. J Biol Chem 248: 6251–6261, 1973.

    PubMed  CAS  Google Scholar 

  10. Lippman ME, Bolan G, Huff K: The effects of estrogens and antiestrogens on hormone-responsive human breast cancer in long term culture. Cancer Res 36: 4595–4601, 1976.

    PubMed  CAS  Google Scholar 

  11. Page MJ, Field JK, Everett NP, Green CD: Serumregulation of the estrogen responsiveness of the human breast cancer cell line MCF-7. Cancer Res 43: 1244–1249, 1983.

    PubMed  CAS  Google Scholar 

  12. Darbe P, Yates J, Curtis S, King RJB: Effect of estradiol on human breast cancer cells in culture. Cancer Res 43: 349–354, 1983.

    Google Scholar 

  13. Chablos D, Vignon F, Keydar I, Rochefort H: Estrogens stimulate cell proliferation and induce secretory proteins in a human breast cancer cell line (T47D). J Clin Endocrinol Metab 55: 276–283, 1982.

    Google Scholar 

  14. Soule HD, McGrath CM: Estrogen responsive proliferation of clonal human breast carcinoma cells in athymic mice. Cancer Lett 10: 177–189, 1980.

    PubMed  CAS  Google Scholar 

  15. Leung BS, Qureshi S, Leung JS: Response to estrogen by the human mammary carcinoma cell line CAMA-1. Cancer Res 42: 5060–5066, 1982.

    PubMed  CAS  Google Scholar 

  16. Reiner GCA, Katzenellenbogen BS: Characterization of estrogen and progesterone receptors in MDA-MB-134 human breast cancer cells. Cancer Res 46: 1124–1131, 1986.

    PubMed  CAS  Google Scholar 

  17. Engle LW, Young NW: Human breast carcinoma cells in continuous culture: a review. Cancer Res 38: 4327–4339, 1978.

    Google Scholar 

  18. Katzenellenbogen B, Norman MJ, Eckert RL, Peltz SW, Mangel WF: Bioactivities, estrogen receptor interactions, and plasminogen activator-inducing activities of tamoxifen and hydroxy-tamoxifen isomers in MCF-7 human breast cancer cells. Cancer Res 44: 112–119, 1983.

    Google Scholar 

  19. Butler WB, Kelsey WH, Goran N: Effects of serum and insulin on the sensitivity of the human breast cancer cell line MCF-7 to estrogens and antiestrogens. Cancer Res 41: 82–88, 1981.

    PubMed  CAS  Google Scholar 

  20. Edwards DP, Murphy SR, McGuire WI: Effect of estrogen and antiestrogen on DNA polymerase in human breast cancer. Cancer Res 40: 1722–1726, 1980.

    PubMed  CAS  Google Scholar 

  21. Natoli C, Sica G, Natoli V, Serra A, Iacobelli S: Two new estrogen-supersensitive variants of the MCF-7 human breast cancer cell line. Breast Cancer Res Treat 3: 23–32, 1983.

    PubMed  CAS  Google Scholar 

  22. Weichselbaum RW, Hellman S, Piro A, et al. Proliferation kinetics of a human breast cancer cell line in vitro following treatment with 17B-estradiol and 1-B-o-arabinofuranasylcytosine. Cancer Res 38: 2339–2342, 1978.

    PubMed  CAS  Google Scholar 

  23. Simon WE, Albrecht M, Trams G, et al. In vitro growth promotion of human mammary carcinoma cells by steroid hormones, tamoxifen, and prolactin. J Natl Cancer Inst 73: 313–321, 1984.

    PubMed  CAS  Google Scholar 

  24. Berthois Y, Katzenellenbogen JA, Katzenellenbogen BS: Phenol red in tissue culture media is a weak estrogen: implications concerning the study of estrogen-responsive cells in culture. Proc Natl Acad Sci USA 83: 2496–2500, 1986.

    PubMed  CAS  Google Scholar 

  25. Whitehead RH, Quirk SJ, Vitali AA, Funder JW, Sutherland RL, and Murphy LC. A new human breast carcinoma cell line (PMC42) with stem cell characteristics. III. Hormone receptor status and responsiveness. J Natl Cancer Inst 73: 643–648, 1984.

    PubMed  CAS  Google Scholar 

  26. Dempsey PJ, Feleppa FP, Brown RW, deKretser TA, Whitehead, RH, Jose DG: Development of monoclonal antibodies to the human breast carcinoma cell line PMC42. J Natl Cancer Inst 77: 1–15, 1986.

    PubMed  CAS  Google Scholar 

  27. Jensen EV: Studies of growth phenomenon using tritium-labeled steroids. Proc. 4th Int. Congress of Biochem, Pergamon Press, Vienna, Vol. 15, 1958, p 119.

    Google Scholar 

  28. Dickson RB, Clark CR: Estrogen receptors in the male. Arch Androl 7: 205–217, 1981.

    PubMed  CAS  Google Scholar 

  29. Strobl JS, Thompson EB: Mechanisms of steroid hormone action. In: Sex Steroid Receptors, Auricchio F (ed). Field Educational Halia Acta Medica, Rome, 1985, pp 9–36.

    Google Scholar 

  30. Jensen EV, Desombre ER: Mechanism of action of the female sex hormones. Ann Rev Biochem 41: 203–230, 1972.

    PubMed  CAS  Google Scholar 

  31. Zava DT, McGuire WI: Estrogen receptor: unoccupied sites in nuclei of a breast tumor cell line. J Biol Chem 252: 2703–3708, 1977.

    Google Scholar 

  32. Edwards PP, Martin PM, Horwitz KB, Chamness GC, McGuire WL: Subcellular compartmentalization of estrogen receptors in human breast cancer cells. Exp Cell Res 127: 197–213, 1980.

    PubMed  CAS  Google Scholar 

  33. King WJ, Greene GL: Monoclonal antibodies localize estrogen receptor in the nuclei of target cells. Nature 307: 745–747, 1984.

    PubMed  CAS  Google Scholar 

  34. Welshons WV, Lieberman ME, Gorski J: Nuclear localization of unoccupied estrogen receptors. Nature 307: 747–749, 1984.

    PubMed  CAS  Google Scholar 

  35. Puca GA, Sica V, Nola E: Identification of a high affinity nuclear acceptor site for estrogen receptor of calf uterus. Proc Natl Acad USA 171: 979–83, 1974.

    Google Scholar 

  36. Spelsberg TC, Webster RA, Pikler GM: Chromosomal proteins regulate steroid binding to chromatin. Nature 262: 65–67, 1976.

    PubMed  CAS  Google Scholar 

  37. Barrack ER, Coffey DS: The specific binding of estrogen and androgens to the nuclear matrix of sex hormone responsive tissues. J Biol Chem, 255: 7265–75, 1980.

    PubMed  CAS  Google Scholar 

  38. Pardoll DM, Vogelstein B, Coffey DS: A fixed site of DNA replication in eucaryotic cells. Cell 19: 527–36, 1980.

    PubMed  CAS  Google Scholar 

  39. Robinson SI, Nelkin BD, Vogelstein B: The ovalbumin gene is associated with the nuclear matrix of chicken oviduct cells. Cell, 28: 99–106, 1985.

    Google Scholar 

  40. Schuh S, Yamemoto W, Brugge J, Bauer VJ, Riehl RM, Sullivan WP, Toft DO: A 90,000 dalton binding protein common to both steroid receptors and the rous sarcoma virus transforming protein pp60v-src. J Biol Chem 260: 14292–14296, 1985.

    PubMed  CAS  Google Scholar 

  41. Walter P, Green S, Greene G, Krust A, Bornert JM, Jeltsch, J-M, Straub A, Jensen E, Scrace G, Waterfield M, Chambon P: Cloning of the human estrogen receptor cDNA. Proc Natl Acad Sci USA, 82: 889–893, 1985.

    Google Scholar 

  42. Giguere SM, Hollenberg SM, Rosenfeld MG, Evans RM, Functional domains of the human glucocorticoid receptor. Cell 46: 645–652, 1986.

    PubMed  CAS  Google Scholar 

  43. Green S, Walter P, Kumar V, Krust A, Bornertt J-M, Argos P, Chambon P: Human oestrogen receptor cDNA: Sequence, expression and homology to v-erb A. Nature 320: 134–139, 1986.

    PubMed  CAS  Google Scholar 

  44. Greene GL, Gilna P, Waterfield M, Baker H, Hort Y, Shine J: Sequence and expression of human estrogen receptor complementary DNA. Science 231: 1150–1154, 1986.

    PubMed  CAS  Google Scholar 

  45. Weinberger C, Thompson CC, Ong ES, Lebo R, Gruol DJ, Evans RM: The c-erb A gene encodes a thyroid hormone receptor. Nature 234: 641–646, 1986.

    Google Scholar 

  46. Sap J, Munoz A, Damm K, Goldberg Y, Ghysdael J, Leutz A, Beug H, Vennstrom B: The c-erb A protein is a high-affinity receptor for thyroid hormone. Nature 234: 635–640, 1986.

    Google Scholar 

  47. Lumar V, Green S, Stark A, Chambon P: Localization of the oestrodial-binding and putative DNA-binding domains of the human oestrogen receptor. EMBO 5: 2231–2236, 1986.

    Google Scholar 

  48. Druege PM, Klein-Hitpass L, Green S, Stock G, Chambon P, Ryffel GU: Introduction of estrogen-responsiveness into mammalian cell lines. Nucleic Acids Res 14: 9329–9337, 1986.

    PubMed  CAS  Google Scholar 

  49. Migliaccio A, Rotondi A, Auricchio F: Calmodulin-stimulated phosphorylation of 17ß-estradiol receptor on tyrosine. Proc Natl Acad Sci USA, 81: 5921–5925, 1985.

    Google Scholar 

  50. Auricchio F, Migliaccio A, Castoria G, Rotondi A: Regulation of hormone binding of 17ß-estradiol receptor by phosphorylation-dephosphorylation of receptor on tyrosine. In: Sex. Steroid Receptors, Auricchio F (ed), Field Educational Italia Acta Medica, Rome, 1985, pp 98–107.

    Google Scholar 

  51. Migliaccio A, Rotondi A, Auricchio F: Estradiol receptor: phosphorylation on tyrosine in uterus and interaction with anti-phosphotyrosine antibody. EMBO 5: 2867–2872, 1986.

    CAS  Google Scholar 

  52. Fleming H, Blumenthal R, Gurpide E: Rapid change in specific estrogen binding elicited by cGMP or cAMP in cytosol from human endometrial cells. Proc Natl Acad Sci USA, 80: 2486–2490, 1983.

    PubMed  CAS  Google Scholar 

  53. Knabbe CK, Lippman ME, Greene GL, Dickson RB: Phorbol ester induced phosphorylation of the estrogen receptor in intact MCF-7 human breast cancer cells. Fed Proc 45: 1899 Washington DC, 1986 (Abstract #2437).

    Google Scholar 

  54. Darbon J-M, Valette A, Bayard F: Phorbol esters inhibit the proliferation of MCF-7 cells. Biochem Pharmacol 35: 2683–2686, 1986.

    PubMed  CAS  Google Scholar 

  55. Hanover JA, Dickson RB: The possible link between receptor phosphorylation and internalization. Trends Phar Sci 6: 164–167, 1985.

    Google Scholar 

  56. Aitken SC, Lippman ME: Hormonal regulation of de novo pyrimidine synthesis and utilization in human breast cancer cells in tissue culture. Cancer Res 43: 4681–4690, 1983.

    PubMed  CAS  Google Scholar 

  57. Aitken SC, Lippman ME: Effect of estrogens and antiestrogens on growth-regulatory enzymes in human breast cancer cells in tissue culture. Cancer Res 45: 1611–1620, 1985.

    PubMed  CAS  Google Scholar 

  58. Cowan K, Levine R, Aitken S, Goldsmith M, Douglass E, Clendeninn N, Nienhuis A, Lippman ME. Dihydrofolate reductase gene amplification and possible rearrangement in estrogen-responsive methotrexate resistant human breast cancer cells. J Biol Chem 257: 15079–15086, 1982.

    PubMed  CAS  Google Scholar 

  59. Kasid A, Davidson N, Gelmann E, Lippman ME: Transcriptional control of thymidine kinase gene expression by estrogens and antiestrogens in MCF-7 human breast cancer cells. J Biol Chem 261: 5562–5567, 1986.

    PubMed  CAS  Google Scholar 

  60. Aitken SC, Lippman ME, Kasid A, Schoenberg DR: Relationship between the expression of estrogen regulated genes and estrogen-stimulated proliferation of MCF-7 mammary tumor cells. Cancer Res 45: 2608–2615, 1985.

    PubMed  CAS  Google Scholar 

  61. Freter CE, Lippman ME, Cheville A, Zinn S and Gelmann EP: Alterations in phosphoinositide metabolism associated with 17-β estradiol and growth factor treatment of MCF-7 breast cancer cells. Mol Encocrin, in press, 1988.

    Google Scholar 

  62. Carney DH, Scott DL, Gordon EA, LaBelle EF: Phosphoinositides in mitogenesis: neomycin inhibits thrombin-stimulated phosphoinositide turnover and initiation of cell proliferation. Cell 42: 479–488, 1985.

    PubMed  CAS  Google Scholar 

  63. Nishizuka Y: Protein kinases in a signal transduction. Trends Biochem Sci 9: 163–171, 1984.

    Google Scholar 

  64. Horwitz KB, McGuire WL: Estrogen control of progesterone receptor in human breast cancer. J Biol Chem 253: 2223–2228, 1978.

    PubMed  CAS  Google Scholar 

  65. Chablos D, Rochefort H: Dual effects of progestin R5020 on proteins released by the T47D human breast cancer cells. J Biol Chem 259: 1231–1238, 1984.

    Google Scholar 

  66. Liotta LA, Rao CN, Weiner UM: Biochemical interactions of tumor cells with the basement membrane. Ann Rev Biochem 55: 1037–1057, 1986.

    PubMed  CAS  Google Scholar 

  67. Terranova VP, Hujanen ES, Martin GR: Basement membrane and the invasive activity of metastatic tumor cells. J Natl Cancer Inst 177: 311–316, 1986.

    Google Scholar 

  68. Kaufman U, Zapf J, Torretti B, Froesch ER: Demonstration of a specific scrum carrier protein of nonsuppressible insulin-like activity in vivo. J Clin Endocrinol Metab 44: 160–166, 1977.

    Google Scholar 

  69. Neufeld EF, Ashwell G: In: The Biochemistry of Glycoproteins and Proteoglycans, Lennarz WJ (ed) Plenum Press, New York, 1980, pp 241–266.

    Google Scholar 

  70. Stoppelli MP, Tacchetti C, Cubellis MV, Corti A, Hearing VJ, Cassani G, Appella E, Blasi F: Autocrine saturation of prourokinase receptors on human A431 cells. Cell 45: 675–684, 1986.

    PubMed  CAS  Google Scholar 

  71. Butler WB, Kirkland WL, Jorgensen TL: Induction of plasminogen activator by estrogen in a human breast cancer cell line (MCF-7). Biochem Biophys Res Comm 90: 1328–1334, 1979.

    PubMed  CAS  Google Scholar 

  72. Ciocca DR, Adams DJ, Edwards DP, Bjerke RJ, McGuire WL: Distribution of an estrogen induced protein with a molecular weight of 24,000 in normal and malignant human tissues and cells. Cancer Res 43: 1204–1210, 1983.

    PubMed  CAS  Google Scholar 

  73. Westley B, Rochefort H: A secreted glycoprotein induced by estrogen in human breast cancer cell lines. Cell 20: 353–362, 1980.

    PubMed  CAS  Google Scholar 

  74. Bronzert DA, Silverman S, Lippman ME: Estrogen inhibtion of a Mr 39,000 glycoprotein secreted by human breast cancer cells. Cancer Res 47: 1234–1238, 1987.

    PubMed  CAS  Google Scholar 

  75. Sheen YY Katzenellenbogen BS: Antiestrogen stimulation of the production of a 37,000 molecular weight secreted protein and estrogen stimulation of the production of a 32,000 molecular weight secreted protein in MCF-7 human breast cancer cells. Endocrinology 120: 1140–1151, 1987.

    PubMed  CAS  Google Scholar 

  76. Jakolew SB, Breathnack R, Jeltsch J, Chambon P: Sequence of the pS2 mRNA induced estrogen in the human breast cancer cell line MCF-7. Nucleic Acids Res 12: 2861–2874, 1984.

    Google Scholar 

  77. May FEB, Westley BR: Cloning of estrogen-regulated messenger RNA sequences from human breast cancer cells. Cancer Res 46: 6034–6040, 1986.

    PubMed  CAS  Google Scholar 

  78. Burke RE, Harris SC, McGuire WL: Lactate dehydrogenase in estrogen responsive human breast cancer cells. Cancer Res 38: 2773–2780, 1978

    PubMed  CAS  Google Scholar 

  79. Vignon F, Capony F, Chambon M, Freiss L, Garcia M, Rochefort H: Autocrine growth stimulation of the MCF-7 breast cancer cell by the estrogen regulated 52K protein. Endocrinology 118: 1537–1545, 1986.

    PubMed  CAS  Google Scholar 

  80. Capony F, Morisset M, Barrett AJ, Capony JP, Broquet P, Vignon F, Chambon M, Louisot P, Rochefort H: Phosphorylation, glycosylation, and proteolytic activity of the 52-kD estrogen-induced protein secreted by MCF-7 cells. J. Cell Biol 104: 253–262, 1987.

    PubMed  CAS  Google Scholar 

  81. Davison NE, Bronzert DA, Chambon P, Gelmann EP, Lippman, ME: Use of two MCF-7 cell variants to evaluate the growth regulatory potential of estrogen-induced products. Cancer Res 46: 1904–1908, 1986.

    Google Scholar 

  82. Bronzert DA, Greene GL, Lippman ME: Selection and characterization of breast cancer cell line resistant to the antiestrogen LY 117018. Endocrinology 117: 1409–1417, 1985.

    PubMed  CAS  Google Scholar 

  83. Bronzert DA, Triche TJ, Gleason P, Lippman ME: Isolation and characterization of an estrogen-inhibited variant derived from the MCF-7 breast cancer cell line. Cancer Res 44: 3942–3951, 1984.

    PubMed  CAS  Google Scholar 

  84. Albini A, Graf JO, Kitten T, Kleinman HK, Martin GR, Veillete A, Lippman ME: Estrogen and v-ras H transfection regulate the interactions of MCF-7 breast carcinoma cells to basement membrane. Proc Natl Acad Sci USA 83: 8182–8186, 1986.

    PubMed  CAS  Google Scholar 

  85. Sapino A, Peitribiasi F, Bussolati G, Marchiso PC: Estrogen and tamoxifen-induced rearrangement of cytoskeletal and adhesion structures in breast cancer MCF-7 cells. Cancer Res 46: 2526–2531, 1986.

    PubMed  CAS  Google Scholar 

  86. Vignon F, Derocq DF, Chambon M, Rochefort H: Estrogen induced proteins secreted by the MCF-7 human breast cancer cells stimulated their proliferation. CR Acad Sci Paris Endocrinol 296: 151–157, 1983.

    CAS  Google Scholar 

  87. Nowell PC: Mechanisms of tumor progression. Cancer Res 46: 2203–2207, 1986.

    PubMed  CAS  Google Scholar 

  88. Zwiebel JA, Bano M, Nexo E, Salomon P, Kidwell WR: Partial purification of transforming growth factors from human milk. Cancer Res 46: 933–939, 1986.

    PubMed  CAS  Google Scholar 

  89. Carpenter G: Epidermal growth factor is a major growth promoting agent in human milk. Science 210: 198–199, 1980.

    PubMed  CAS  Google Scholar 

  90. Lippman ME, Buzdar A, Tormey DC, McGuire WL: Combining endorcine and chemotherapy any true benefits? Breast Cancer Res Treat 4: 251–259, 1985.

    Google Scholar 

  91. Jordan VC: Biochemical pharmacology of antiestrogen action. Pharmacol Rev 36: 245–276, 1984.

    PubMed  CAS  Google Scholar 

  92. Watts CKW, Murphy LC, Sutherland RL: Microsomal binding sites for nonsteroidal anti-estrogens in MCF-7 human mammary carcinoma cells. J Biol Chem 259: 4223–4229, 1984.

    PubMed  CAS  Google Scholar 

  93. Rochefort H: Do antiestrogens and antiprogestins act as hormone antagonists or receptor-targeted drugs in breast cancer? Trends Pharmacol Sci 8: 126–128, 1987.

    CAS  Google Scholar 

  94. O’Brian CA, Liskamp RM, Solomon DH, Weinstein IB: Inhibition of protein kinase C by tamoxifen. Cancer Res 45: 2462–2465, 1985.

    PubMed  Google Scholar 

  95. Sutherland RL, Hall RE, Taylor IW: Cell proliferation kinetics of MCF-7 human mammary carcinoma cells in culture and effects of tamoxifen on exponentially growing and plateau phase cells. Cancer Res 43: 3998–4006, 1983.

    PubMed  CAS  Google Scholar 

  96. Osborne CK, Hobbs K, Clark GM: Effects of estrogens and antiestrogens on growth of human breast cancer cells in athymic nude mice. Cancer Res 45: 584–590, 1985.

    PubMed  CAS  Google Scholar 

  97. Osborne CK, Boldt DH, Clark GM, Trent JM: Effects of tamoxifen on human breast cancer cell cycle kinetics: accumulation of cells in early G1 phase. Cancer Res 43: 3583–3585, 1983.

    PubMed  CAS  Google Scholar 

  98. Robinson SP, Jordan VC. Metabolism of steroid-modifying anticancer agents. Pharmac Therap 36: 41–103, 1988.

    CAS  Google Scholar 

  99. Wakeling AE, Bowler J: Steroidal pure antioestrogens. J Endocrin 112: R7 - R10, 1987.

    CAS  Google Scholar 

  100. Lippman ME: Definition of hormones and growth factors required for optimal proliferation and expression of phenotypic responses in human breast cancer cells In: Cell Culture Methods for Molecular and Cell Biology, Vol. 2, Barnes DW, Sirbasku DA, Sato GH (eds), Alan R. Liss, New York, 1984, pp 183–200.

    Google Scholar 

  101. Eisman JA, Martin TJ, MacIntyre I, Framptin RJ, Moseley JM, Whitehead R: 1,25-dihydroxyvitamin D3 receptor in a cultured breast cancer cell line (MCF-7 cells). Biochem Biophys Res Commun 93: 9–18, 1980.

    PubMed  CAS  Google Scholar 

  102. Furlanetto RW, DiCarlo JN: Somatomedin C receptors and growth effects in human breast cells maintained in long-term culture. Cancer Res 44: 2122–2128, 1984.

    PubMed  CAS  Google Scholar 

  103. Myal Y, Shiu RPC, Bhawmick B, Bala M: Receptor binding and growth promoting activity of insulin-like growth factors in human breast cancer cells (T47D) in culture. Cancer Res 44: 5486–5490, 1984.

    PubMed  CAS  Google Scholar 

  104. Dickson RB, Lippman ME: Estrogenic regulation of growth and polypeptide growth factor secretion in human breast carcinoma. Endocr Rev 8: 29–43, 1987.

    PubMed  CAS  Google Scholar 

  105. Setyono-Han B, Henkelman MS, Foekens JA, Klijn JGM: Direct inhibitory effects of somatostatin (analogues) on the growth of human breast cancer cells. Cancer Res 47: 1566–1570, 1987.

    PubMed  CAS  Google Scholar 

  106. Ikeda T, Sirbasku DA: Purification and properties of a mammary-uterine-pituitary tumor cell growth factor from pregnant sheep uterus. J Biol Chem 259: 4049–4964, 1984.

    PubMed  CAS  Google Scholar 

  107. Bates SE, McManaway ME, Lippman ME, Dickson RB: Characterization of estrogen responsive transforming activity in human breast cancer cell lines. Cancer Res 46: 1707–1713, 1986.

    PubMed  Google Scholar 

  108. Huseby RA, Maloney TM, McGrath CM: Evidence for a direct growth-stimulating effect of estradiol on human MCF-7 cells in vivo. Cancer Res 44: 2654–2659, 1984.

    PubMed  CAS  Google Scholar 

  109. McGrath CM: Augmentation of the response of normal mammary epithelial cells to estradiol by mammary stroma. Cancer Res 43: 1355–1360, 1983.

    PubMed  CAS  Google Scholar 

  110. Haslam SZ: Mammary fibroblast influence on normal mouse mammary epithelial cell responses to estrogen in vitro. Cancer Res 46: 310–316, 1986.

    PubMed  CAS  Google Scholar 

  111. Durnberger H, Heuberger B, Schwartz P, Wasner G, Kratochwil, K: Mesenchyme-mediated effect of testosterone on embryonic mammary epithelium. Cancer Res 38: 4066–4070, 1978.

    PubMed  CAS  Google Scholar 

  112. Jakesz R, Smith CA, Aitken S, Huff KK, Schuette W, Schackney S, Lippman ME: Influence of cell proliferation and cell cycle phase on expression of estrogen receptor in MCF-7 breast cancer cells. Cancer Res 44: 619–625, 1984.

    PubMed  CAS  Google Scholar 

  113. Dickson RB, Huff KK, Spencer EM, Lippman ME: Induction of epidermal growth factor-related polypeptides by 17ß-estradiol in MCF-7 human breast cancer cells. Endocrinology 118: 138–142, 1986.

    PubMed  CAS  Google Scholar 

  114. Dickson RB, McManaway M, Lippman ME: Estrogen induced factors of breast cancer cells partially replace estrogen to promote tumor growth. Science 232: 1540–1543, 1986.

    PubMed  CAS  Google Scholar 

  115. Smith HS, Scher CD, Todaro GJ: Induction of cell division in medium lacking serum growth factor by SV40. Virology 44: 359–370, 1971.

    PubMed  CAS  Google Scholar 

  116. Heldin CH, Westermark B: Growth factors: mechanism of action and relations to oncogenes. Cell 37: 9–20, 1984.

    PubMed  CAS  Google Scholar 

  117. Clemmons DR, Shaw DS: Variables controlling somatomedin production by cultured human fibroblasts. J Cell Physiol 115: 137–143, 1983.

    PubMed  CAS  Google Scholar 

  118. Clemmons DR, van Wyk JJ: Evidence for a functional role of endogenously produced somatomedin-like peptides in the regulation of DNA synthesis in cultured human fibroblasts and porcine smooth muscle cells. J Clin Invest 75: 1914–1918, 1986.

    Google Scholar 

  119. Cherington PV, Smith BL, Pardee AB: Loss of epidermal growth factor requirement and malignant transformation. Proc Natl Acad Sci USA 76: 3937–3942, 1979.

    PubMed  CAS  Google Scholar 

  120. Bradshaw GL, Dubes GR: Polyoma virus transformation of rat kidney fibroblasts results in loss of requirement for insulin and retinoic acid. J Gen Virol 64: 2311–2315, 1984.

    Google Scholar 

  121. Zhan X, Goldfarb M: Growth factor requirements of oncogene-transformed NIH 3T3 and Balb/c 3T3 cells cultured in defined media. Mol Cell Biol 6: 3541–3544, 1986.

    PubMed  CAS  Google Scholar 

  122. Sporn MB, Todaro GJ: Autocrine secretion and malignant transformation of cells. N Engl J Med 303: 878–880, 1980.

    PubMed  CAS  Google Scholar 

  123. Delarco JE, Todaro GJ: Growth factors from murine sarcoma virus-transformed cells. Proc Natl Acad Sci USA 75: 4001–4005, 1978.

    CAS  Google Scholar 

  124. Freedman VH, Shin S: Cellular tumorigenicity in nude mice: correlation with cell growth in semi-solid medium. Cell 3: 355–359, 1974.

    PubMed  CAS  Google Scholar 

  125. Assoian RK, Grotendorst GR, Miller DM, Sporn MB: Cellular transformation by coordinated action of three peptide growth factors from human platelets. Nature (London) 309: 804–806, 1984.

    CAS  Google Scholar 

  126. Massague J, Kelly B, Mottola C: Stimulation by insulin-like growth factors is required for cellular transformation by type transforming growth factor. J Biol Chem 260: 4551–4554, 1985.

    PubMed  CAS  Google Scholar 

  127. Hammond SL, Ham RG, Stampfer MR: Serum-free growth of human mammary epithelial cells: rapid clonal growth in defined medium and extended serial passage with pituitary extract. Proc Natl Acad Sci USA 81: 5435–5439, 1984.

    PubMed  CAS  Google Scholar 

  128. Tucker RF, Shipley GD, Moses HL, Holley RW: Growth inhibitor from BSC-1 cells closely related to platelet type β transforming growth factor. Science 226: 705–707, 1984.

    PubMed  CAS  Google Scholar 

  129. Roberts AB, Anzano MA, Wakefield LM, Roche NS, Stern DF, Sporn MB: Type β transforming growth factor: a bifunctional regulator of cellular growth. Proc Natl Acad Sci USA 82: 119–123, 1985.

    PubMed  CAS  Google Scholar 

  130. Halper J, Moses HL: Purification and characterization of a novel transforming growth factor Cancer Res 47: 4552–4559, 1987.

    CAS  Google Scholar 

  131. Salomon DS, Zweibel JA, Bano M, Losonczy I, Felnel P, Kidwell WR: Presence of transforming growth factors in human breast cancer cells. Cancer Res 44: 4069–4077, 1984.

    PubMed  CAS  Google Scholar 

  132. Knabbe C, Lippman ME, Wakefield L, Flanders K, Kasid A, Derynck R, Dickson RB: Evidence that TGFβ is a hormonally regulated negative growth factor in human breast cancer. Cell 48: 417–428, 1987.

    PubMed  CAS  Google Scholar 

  133. Nickeil KA, Halper J, Moses HL: Transforming growth factors in solid human malignant neoplasms. Cancer Res 43: 1966–1971, 1983.

    Google Scholar 

  134. Valverius E, Bates SE, Salomon DS, Stampfer M, Clark R, McCormick F, Lippman ME, Dickson RB: Production of transforming growth factor alpha by human mammary epithelial cells and sublines. Proceedings of the Annual Meeting of the Endocrine Society, Indianapolis, Ind, p. 97, 1987 (Abstract #306).

    Google Scholar 

  135. Bates SE, Valverius E, Salomon D, Stampfer M, Lippman ME, Dickson RB: Expression and estrogen regulation of transforming growth factor a (TGFa) mRNA in human breast cancer. Proceedings of the Annual Meeting of the American Association for Cancer Research, Atlanta, Ga, 28: 240, 1987.

    Google Scholar 

  136. Perroteau E, Salomon D, Debortali M, Kidwell W, Hazarika P, Pardue R, Dedman J, Tarn J: Immunological detection and quantitation of alpha transforming growth factors in human breast carcinoma cells. Breast Cancer Res Treat 7: 201–210, 1986.

    PubMed  CAS  Google Scholar 

  137. Derynck R, Roberts AB, Winkler ME, Chen EY, Goeddel DV: Human transforming growth factor-a: precursor structure and expression in E. coli. Cell 38: 287–297, 1984.

    PubMed  CAS  Google Scholar 

  138. Ignotz RA, Kelly B, Davis RJ, Massague J: Biologically active precursor for transforming growth factor type a released by retrovirally transformed cells. Proc Natl Acad Sci USA, 83: 6307–6311, 1986.

    PubMed  CAS  Google Scholar 

  139. Bringman TS, Lindquist PB, Derynck R: Different transforming growth factor-a species are derived from a glycosylated and palmitoylated transmembrane precursor. Cell 48: 429–440, 1987.

    PubMed  CAS  Google Scholar 

  140. Gentry LE, Twardzik DR, Lim GJ, Ranchalis JE, Lee DC: Expression and characterization of transforming growth factor precursor protein in transfected mammalian cells. Mol Cell Biol 7: 1585–1591, 1987.

    PubMed  CAS  Google Scholar 

  141. Derynck R, Roberts AB, Eaton DH, Winkler MC, Goeddel DV: Human transforming growth factor a precursor sequence gene structure, and heterologous expression. In: Cancer Cells 3: Growth factors and transformation, Feramisco J, Ozanne B, Stiles C (eds), Cold Spring Harbor Laboratory, New York pp 79–86, 1985.

    Google Scholar 

  142. Derynck R, Goeddel DV, Ullrich A, Gutterman JU, Williams RD Bringman TS, Berger WH: Synthesis of messenger RNAs for transforming growth factors a and ß and the epidermal growth factor receptor by human tumors. Cancer Res 47: 707–712, 1982.

    Google Scholar 

  143. Hackett AJ, Smith HS, Springer EL, Owens RB, Nelson-Rees WA, Riggs JL, Gardner MB: Two syngeneic cell lines from human breast tissue: the aneuploid mammary epithelial (Hs578T) and the diploid myoepithelial (Hs578Bst) cell lines. J Natl Cancer Inst 58: 1795–1806, 1977.

    PubMed  CAS  Google Scholar 

  144. Bates SE, Davidson NE, Valverius E, Dickson RB, Freter C Kudlow JE, Tarn JP, Lippman ME, Salomon D: Expression of transforming growth factor alpha mRNA in human breast cancer: regulation by estrogen. Molec Endocrin, in press, 1988.

    Google Scholar 

  145. Sherwin C, Twardzik PR, Bohn WH, Cockley KD, Todaro GJ: High molecular weight transforming growth factor activity in the urine of patients with disseminated cancer. Cancer Res 43: 403–407, 1983.

    PubMed  CAS  Google Scholar 

  146. Kim M, Warren TC, Kimball ES: Purification and characterization of a low molecular weight transforming growth factor from the urine of melanoma patients. J Biol Chem 260: 9237–9243, 1985.

    PubMed  CAS  Google Scholar 

  147. Twardzik DR, Kimball ES, Sherwin SA, Ranchalis JE, Todaro GS: Comparison of growth factors functionally related to epidermal growth factor in the urine of normal and human tumor-bearing athymic nude mice. Cancer Res 45: 1934–1939, 1985.

    PubMed  CAS  Google Scholar 

  148. Kimball ES, Bohn WH, Cockley KD, Warren TC, Sherwin SA: Distinct high-performance liquid chromatography pattern of transforming growth factor activity in urine of cancer patients as compared with that of normal individuals. Cancer Res 44: 3613–3619, 1984.

    PubMed  CAS  Google Scholar 

  149. Sato M, Yoshida H, Hayashi Y, Miyakami K, Bundo T, Yanagowa T, Yura Y, Azuma M, Ueno A: Expression of epidermal growth factor and transforming growth factor-α in a human salivary gland adenocarcinoma cell line. Cancer Res 45: 6160–6167, 1985.

    PubMed  CAS  Google Scholar 

  150. Kobrin MS, Samosondar J, Kudlow JE: α-Transforming growth factor secreted by untrans-formed bovine anterior pituitary cells in culture. J Biol Chem 261: 14414–14419, 1986.

    PubMed  CAS  Google Scholar 

  151. Rosenthal A, Lindquist PB, Bringman TS, Goeddel DV, Derynck R: Expression in rat fibroblasts of a human transforming growth factor α and cDNA results in transformation. Cell 46: 301–309, 1986.

    PubMed  CAS  Google Scholar 

  152. Stern DF, Hare DL, Cecchini MA, Weinberg RA: Construction of a novel oncogene based on synthetic sequences encoding epidermal growth factor. Science 235: 321–324, 1987.

    PubMed  CAS  Google Scholar 

  153. Stoscheck CM, King LE: Role of epidermal growth factor in carcinogenesis. Cancer Res 46: 1030–1037, 1986.

    PubMed  CAS  Google Scholar 

  154. Kurachi H, Okamoto S, Oka T: Evidence for the involvement of the submandibular gland epidermal growth factor in mouse mammary tumorigenesis. Proc Natl Acad Sci USA 81: 5940–5943, 1985.

    Google Scholar 

  155. Fitzpatrick SL, LaChance MP, Schultz GS: Characterization of epidermal growth factor receptor and action on human breast cancer cells in culture. Cancer Res 44: 3442–3447, 1984.

    PubMed  CAS  Google Scholar 

  156. Davidson NE, Gelmann EP, Lippman ME, Dickson RB: EGF receptor gene expression in estrogen receptor-positive and negative human breast cancer cell lines. Mol Endocrinol 1: 216–233, 1987.

    PubMed  CAS  Google Scholar 

  157. Osborne CK, Hamilton B, Titus G, Livingston RB: Epidermal growth factor stimulation of human breast cancer cells in culture. Cancer Res 40: 2361–2366, 1980.

    PubMed  CAS  Google Scholar 

  158. Kudlow JE, Cheung CYM, Bjorge JD: Epidermal growth factor stimulates the synthesis of its own receptor in a human breast cancer cell line. J Biol Chem 261: 4134–4138, 1986.

    PubMed  CAS  Google Scholar 

  159. Sawyer ST, Cohen S: Epidermal growth factor stimulates the phosphorylation of the calcium-dependent 35,000-dalton substrate in intact A-431 cells. J Biol Chem 260: 8233–8236, 1985.

    PubMed  CAS  Google Scholar 

  160. Eisholtz HP, Mangalam HJ, Potter E, Albert VR, Supowit S, Evans RM, Rosenfeld MG: Two different cis-active elements transfer the transcriptional effects of both EGF and phorbol esters. Science 234–1552–1557, 1986.

    Google Scholar 

  161. Schlessinger, J: Allosteric regulation of the epidermal growth factor receptor kinase. J Cell Biology 103: 2067–2072, 1986.

    CAS  Google Scholar 

  162. Tarn JP: Physiological effects of transforming growth factor in the newborn mouse. Science 229: 673–675, 1985.

    Google Scholar 

  163. Schultz G, White M, Mitchell R, Brown G, Lynch J, Twardzik DR, Todaro GJ: Epithelial wound healing enhanced by transforming growth factor a and vaccinia growth factor. Science 235: 350–352, 1987.

    PubMed  CAS  Google Scholar 

  164. Schreiber AB, Winkler MF, Derynck R: Transforming growth factor-α—a more potent angiogenic mediator than epidermal growth factor. Science 232: 1250–1253, 1986.

    PubMed  CAS  Google Scholar 

  165. Folkman J, Klagsbrun M: Angiogenic factors. Science 235: 442–447, 1987.

    PubMed  CAS  Google Scholar 

  166. Jaye M, Howk R, Burgess W, Ricca GA, Chiu HM, Ravera M, O’Brien SJ, Modi WS, Maciag T, Drohan WN: Human endothelial cell growth factor: cloning, nucleotide sequence, and chromosome localization. Science 233: 541–548, 1986.

    PubMed  CAS  Google Scholar 

  167. Lobb R, Sasse J, Sullivan R, Shing Y D’Amore P, Jacobs J, Klagsbrun M: Purification and characterization of heparin binding endothelial cell growth factors. J Biol Chem 261: 1924–1928, 1986.

    PubMed  CAS  Google Scholar 

  168. Kurachi K, Davie EW, Strydom DJ, Riordan JF, Vallee BL: Sequence of the cDNA and gene for angiogenin, a human angiogenesis factor. Biochemistry 24: 5494–5499, 1985.

    PubMed  CAS  Google Scholar 

  169. Maciag, T: Angiogenesis, Progress in Hemostasis and Thrombosis (Grune & Stratton), pp 167–182, 1986.

    Google Scholar 

  170. West DC, Hampson IN, Arnold F, Kumar S: Angiogenesis induced by degradation products of hyaluronic acid. Science 228: 1324–1326, 1985.

    PubMed  CAS  Google Scholar 

  171. Schreiber AB, Kenney J, Kowalski J, Thomas KA, Gimenez-Gallego G, Rios-Candelore M, DiSalvo J, Bamitault D, Courty J, Courtois Y, Moemer M, Loret C, Burgess WH, Mehlman T, Friesel R, Johnson W, Maciag T: A unique family of endothelial cell polypeptide mitogens: the antigenic and receptor cross-activity of bovine endothelial growth factor and eye-derived growth factor-II. J Cell Biol 101: 1623–1626, 1985.

    PubMed  CAS  Google Scholar 

  172. Gospodarowicz D, Greenburg G, Bialecki H, Zetter BR: Factors involved in the modulation of cell proliferation in vivo and in vitro: the role of fibroblast and epidermal growth factors in the proliferative response of mammalian cells. In Vitro 14: 85–113, 1978.

    PubMed  CAS  Google Scholar 

  173. Kao RT, Hall J, Engel L, Stern R: The matrix of human breast tumor cells is mitogenic for fibroblasts. Am J Path 115: 109–116, 1984.

    PubMed  CAS  Google Scholar 

  174. Tasjian AH, Voelkel EF, Lazzaro M, Singer FR, Roberts AB, Derynck R, Winkler ME, Levine L: a and β human transforming growth factors stimulate prostaglandin production and bone resorption in cultured mouse calvaria. Proc Natl Acad Sci USA 82: 4535–4538, 1985.

    Google Scholar 

  175. Huff KK, Kaufman D, Gabbay KH, Spencer EM, Lippman ME, Dickson RB: Human breast cancer cells secrete an insulin-like growth factor-1-related polypeptide. Cancer Res 46: 4613–4619, 1986.

    PubMed  CAS  Google Scholar 

  176. Baxter RC, Maitland JE, Raisur RL, Reddel R, Sutherland RL: High molecular weight somatomedin-C (IGF-I) from T47D human mammary carcinoma cells: immunoreactivity and bioactivity. In: Insulin-like Growth Factors/Somatomedins Spencer, EM (ed), Walter deGruyter Co, Berlin, 1983, pp 615–618.

    Google Scholar 

  177. Jansen M, Van Schaik FMA, Ricker AT, Bullock B, Woods RE, Gabbay KH, Nussbaum AL, Sussenback JS, Vander Branch JR: Sequence of cDNA encoding human insulin-like growth factor I precursor. Nature (London), 306: 609–611, 1983.

    CAS  Google Scholar 

  178. Han VK, D’Ercole AJ, Lund PK: Cellular localization of somatomedin (insulin-like growth factor) messenger RNA in the human fetus. Science 236: 193–197, 1987.

    PubMed  CAS  Google Scholar 

  179. Huff KK, Knabbe C, Kaufman D, Lippman ME, Dickson RB: Hormonal regulation of insulin-like growth factor I (IGF-I) secretion from MCF-7 human breast cancer cells. J. Cell Biochem Supplement 11A: 28, 1987.

    Google Scholar 

  180. Huff KK, Knabbe C, Lindsay R, Lippman ME, Dickson RB: Multihormonal regulation of insulin-like growth factor-I-related protein in MCF-7 human breast cancer cells. Molecular Endocrinology, submitted.

    Google Scholar 

  181. Rechler MM, Bruni CB, Yang YWH, Whitfield HJ, Graham DE, Franzio R, Brown AL, Nissley SP: Regulation of insulin-like growth factor gene expression. ICSU Short reports, Vol. 4, Puett D, Ahmad F, Black S, Lopez DM, Meiner MH, Scott WA, Whelan, W.J. (eds). Cambridge University Press, 1986, pp 79–82.

    Google Scholar 

  182. Rechler MM, Nissley SP: Insulin-like growth factor (IGF)/somatomedin receptor subtypes: structure, function, and relationships to insulin receptor and IGF carrier proteins. Hormone Res 24: 152–159, 1986.

    PubMed  CAS  Google Scholar 

  183. Ullrich A, Gray A, Tarn AW, Yang Feng T, Tsubokawa M, Collins C, Henzel W, Le Bon T, Kathuria S, Chen E, Jacobs S Francke U, Ramachandran J, Fujita-Yamaguchi Y: Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J 5: 2503–2512, 1986.

    PubMed  CAS  Google Scholar 

  184. Campisi J, Pardee AB: Post-transcriptional control of the onset of DNA synthesis by an insulin-like growth factor. Mol Cell Biol 4: 1807–1814, 1984.

    PubMed  CAS  Google Scholar 

  185. Surmacz E, Kaczmarek L, Ronning O, Baserga R: Activation of the ribosomal DNA promoter in cells exposed to insulin-like growth factor I. Mol Cell Biol 7: 657–673, 1987.

    PubMed  CAS  Google Scholar 

  186. Ellis L, Clauser E, Morgan DO, Ederg M, Roth RA, Rutter WJ: Replacement of insulin receptor tyrosine residues 1162 and 1163 compromises insulin-stimulated kinase activity and uptake of 2-deoxyglucose. Cell 46: 721–732, 1986.

    Google Scholar 

  187. Clemmons DR, Elgin RG, Han VKM, Casella SJ, D’Ercole AJ, Van Wyk JJ: Cultured fibroblast monolayers secretage a protein that alters the cellular binding of somatomedin-C/insulin-like growth factor I. J Clin Invest 77: 1548–1556, 1986.

    PubMed  CAS  Google Scholar 

  188. Drop SLS, Kortlene DJ, Guyda HJ: Isolation of a somatomedin-binding protein from preterm amniotic fluid; development of a radioimmunoassay. J Clin Endocrinol Metab 59: 899–910, 1984.

    PubMed  CAS  Google Scholar 

  189. Devroede MA, Tseng LMH, Katsyannis PG, Nissley SP, Rechler MM: Modulation of insulin-like growth factor I binding to human fibroblast monolayers by insulin-like growth factor carrier proteins released to the incubation media. J Clin Invest 77: 602–610, 1986.

    CAS  Google Scholar 

  190. Nissley SP, Rechler MM: Insulin-like growth factors: biosynthesis receptors and carrier proteins. In: Hormonal Proteins and Peptides, Vol. XII, Li CH (ed). Academic Press, New York, 1984, pp 128–203.

    Google Scholar 

  191. Van Wyk JJ: Somatomedins: biological actions and physiologic control mechanisms. In: Hormonal Proteins and Peptides, Vol. XII, Li, CH (ed). Academic Press, New York, 1984, pp 82–125.

    Google Scholar 

  192. Minuto F, Del Monte PD, Baweca A, Fortini P, Cariola G, Caterambone G, Giordano G: Evidence for an increased somatomedin C/insulin-like growth factor I content in primary human lung tumors. Cancer Res 46: 985–988, 1986.

    PubMed  CAS  Google Scholar 

  193. Tricoli JV, Rall LB, Karakousis CP, Herrera L, Petrelli N, Bell GL, Shows TB: Enhanced levels of insulin-like growth factor messenger RNA in human colon carcinomas and lipo-sarcomas. Cancer Res 46: 6169–6173, 1986.

    PubMed  CAS  Google Scholar 

  194. Reeve AE, Eccles MR, Wilkins RJ, Bell GI, Millon LJ: Expression of insulin-like growth factor II transcripts in Wilms tumor. Nature 317: 258–260, 1985.

    PubMed  CAS  Google Scholar 

  195. Stiles CD, Capone GT, Scher CD, Antoniades HN, Van Wyk J, Pledger WJ: Dual control of cell growth by somatomedins and platelet derived growth factor. Proc Natl Acad Sci USA 76: 1279–1283, 1979.

    PubMed  CAS  Google Scholar 

  196. Sporn MB, Roberts AB, Wakefield LM, Assoian RK: Transforming growth factor β: Biological function and chemical structure. Science 233: 532–534, 1986.

    PubMed  CAS  Google Scholar 

  197. Wang JL, Hsu YM: Negative regulators of cell growth. Trends Bio Sci 11: 24–26, 1986.

    CAS  Google Scholar 

  198. Derynck R, Jarrett JA, Chen EY, Eaton DH, Bell JR, Assoian RK, Roberts AB, Sporn MB, Goeddel DV: Human transforming growth factor β: Complementary DNA sequence and expression in normal and transformed cells. Nature 316: 701–705, 1985.

    PubMed  CAS  Google Scholar 

  199. King WJ, Desombre ER, Jensen EV, Greene GI: Comparison of immunocytochemical and steroid binding assays for estrogen receptor in human breast tumors. Cancer Res 45: 294–304, 1985.

    Google Scholar 

  200. Greene GL, Sobel NB, King WJ, Jensen EV: Immunological Studies of estrogen receptors. J Steroid Biochem 20: 51–56, 1984.

    PubMed  CAS  Google Scholar 

  201. Lawrence DA, Pircher R, Krycene-Martineirie A, Lullien P: Normal embryo fibroblasts release transforming growth factors in a latent form. J Cell Physiol 121: 184–188, 1984.

    PubMed  CAS  Google Scholar 

  202. Keski-Oja F, Lyons RM and Moses HL: Immunodetection and modulation of cellular growth with antibodies against native transforming growth factor β. Cancer Res 47: 645–646, 1987.

    Google Scholar 

  203. Cheifetz S, Wentherbee JA, Tsang MSS, Anderson JK, Mole JE, Lucas R, Massague J: The tranforming growth factor-β system, a complex pattern of cross-reactive ligands and receptors. Cell 48: 409–415, 1987.

    PubMed  CAS  Google Scholar 

  204. Massague J, Kelly BJ: Internalization of transforming growth factor-β and its receptor in BALB/c 3T3 fibroblasts. J Cell Physiol 128: 216–222, 1986.

    PubMed  CAS  Google Scholar 

  205. Dickson RB: Endocytosis of polypeptides and their receptors. Trends Pharm Sci 6: 164–167, 1985.

    CAS  Google Scholar 

  206. Leof EB, Proper JA, Goustin AJ, Shipley GD, Dicorleto PE, Moses HL: Induction of c-sis mRNA and activity similar to platelet-derived growth factor: A proposed model for indirect mitogenesis involving autocrine activity. Proc Natl Acad Sci USA, 83: 2453–2457, 1986.

    PubMed  CAS  Google Scholar 

  207. Ignotz RA, Massage J: Transforming growth factor-β stimulates the expression of fibro-nectin and collagen and their incorporation into the extracellular matrix. J Biol Chem 261: 4337–4345, 1986.

    PubMed  CAS  Google Scholar 

  208. Massague J: Transforming growth factor-β modulates the high affinity receptors for epidermal growth factor and transforming growth factor-. J Cell Biol 100: 1508–1514, 1985.

    PubMed  CAS  Google Scholar 

  209. Myrdal SE, Twardzik DR, Auersperg N: Cell mediated co-action of transforming growth factors: incubation of Type β with normal rat kidney cells produces a soluble activity that prolongs the ruffling response to type a. J. Cell. Biol 102: 1230–1234, 1986.

    PubMed  CAS  Google Scholar 

  210. Massague J, Cheifetz S, Endo T, Nadal-Ginard B: Type β transforming growth factor is an inhibitor of myogenic differentiation. Proc Natl Acad Sci USA 83: 8206–8210, 1986.

    PubMed  CAS  Google Scholar 

  211. Olson EN, Sternberg E, Hu JS, Spizz G, Wilcox C: Regulation of myogenic differentiation by type β transforming growth factor. J Cell Biol 103: 1799–1805, 1986.

    PubMed  CAS  Google Scholar 

  212. McMahon JB, Richards WL, del Campo AA, Song M-K, Thorgeirsson SS: Differential effects of transforming growth factor β on proliferation of normal and malignant rat liver epithelial cells in culture. Cancer Res 46: 4665–4671, 1986.

    PubMed  CAS  Google Scholar 

  213. Cate RL, Mattaliano RJ, Hession C, Tizard R, Farber NR, Cheung A, Ninfa EG, Frey AZ, Gash DJ, Chow EP, Fisher RA, Bertonis JM, Torres G, Wallner BP, Ramachandran KL, Ragin RC, Manganaro TF, MacLaughlin DT, Donahoe PK: Isolation of the bovine and human genes for Müllerian inhibiting substance and expression of the human gene in animal cells. Cell 45: 685–698, 1987.

    Google Scholar 

  214. Heimark RL, Twardzik DR, Schwartz SM: Inhibition of endothelial regeneration by type-beta transforming growth factor from platelets. Science 233: 1078–1080, 1986.

    PubMed  CAS  Google Scholar 

  215. Takehara K, LeRoy EC, Grotendorst GR: TGFβ inhibition of endothelial cell proliferation alteration of EGF binding and EGF-induced growth regulatory (competence) gene expression. Cell 49: 415–422, 1987.

    PubMed  CAS  Google Scholar 

  216. Roberts AB, Sporn MB, Assoian RK, Smith JM, Roche NS, Wakefield LM, Heine UI, Liotta LA, Falanga V, Kehrl JH, Fauci A: Transforming growth factor type β: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA 83: 4167–4171, 1986.

    PubMed  CAS  Google Scholar 

  217. Ross R, Raines EW, Bowen-Pope DF: The Biology of platelet-derived growth factor. Cell 46: 155–169, 1986.

    PubMed  CAS  Google Scholar 

  218. Huang JS, Huang SS, Deuel TF: Transforming protein of simian sarcoma virus stimulates autocrine growth of SSV-transformed cells through PDGF cell surface receptors. Cell 39: 79–87, 1984.

    PubMed  CAS  Google Scholar 

  219. Yeh HJ, Pierce GF, Denel TF: Ultrastructure localization of a platelet-derived growth factor/v-sis-related protein(s) in cytoplasm and nucleus of simian sarcoma virus-transformed cells. Proc Natl Acad Sci USA 84: 2317–2321, 1987.

    PubMed  CAS  Google Scholar 

  220. Rozengurt E: Early signals in the mitogenic response. Science 234: 161–166, 1986.

    PubMed  CAS  Google Scholar 

  221. Bronzert DA, Pantazis P, Antoniades HN, Kasid A, Davidson N, Dickson RB, Lippman ME: Synthesis and secretion of PDGF-like growth factor by human breast cancer cell lines. Proc Natl Acad Sci USA, 84: 5763–5767, 1987.

    PubMed  CAS  Google Scholar 

  222. Peres R, Betsholtz C, Westermark B. and Heldin C-H: Frequent expression of growth factors for mesanchymal cells in human breast carcinoma lines. Cancer Res 47: 3425–3429, 1987.

    PubMed  CAS  Google Scholar 

  223. Rozengurt E, Sinnett-Smith J, Taylor-Papadimitriou J: Production of PDGF-like growth factor by breast cancer lines. Int J Cancer 36: 247–252, 1985.

    PubMed  CAS  Google Scholar 

  224. Betsholtz C, Hohnsson A, Heldin CH, Westermark B, Lind P, Urdea MS, Eddy R, Shows TB, Philpott K, Mellor AL, Knott TJ, Scott J: cDNA sequence and chromosomal localization of human platelet derived growth factor A chain and its expression tumor cell lines. Nature 320: 695–700, 1986.

    PubMed  CAS  Google Scholar 

  225. Yarden Y, Escobedo JA, Kwang WJ, Yang-Feng TL, Daniel Tremble PM, Chen EY, Ando ME, Harkins RN, Franks U, Fried VA, Ullrich A, Williams LT: Structure of the receptor for platelet-derived growth factor helps define a family of closely related growth factors. Nature 323: 226–232, 1986.

    PubMed  CAS  Google Scholar 

  226. Ro JY, Holoye PY, Gutterman JU, Block MB: c-sis expression in primary human breast carcinoma. Proceedings of the 78th Annual Meeting of the American Association for Cancer Research, Atlanta, Georgia. 1987. Abstract #74.

    Google Scholar 

  227. Dembinski TC, Leung CKH, Shiu RPC: Evidence for a novel pituitary factor that poentiates the mitogenic effect of estrogen in human breast cancer cells. Cancer Res 45: 3083–3089, 1985.

    PubMed  CAS  Google Scholar 

  228. Shiu RPC, Myal Y, Leung CKH, Dmebinski TC, Iwasiow B: Relationship between a pituitary-derived growth factor for breast cancer and insulin-like growth factor 2 (IGF-2). Institute Scientifique Roussel Symposium on ‘Hormones, Oncogenes and Growth Factors,’ Paris, June, 1986.

    Google Scholar 

  229. Dell’Aguilla ML, Pigott DA, Bonaguist DL, Gaffney EV: A factor from plasma-derived human serum that inhibits the growth of the mammary cell line MCF-7: Characterization and purification. J Natl Cancer Inst 72: 291–298, 1984.

    Google Scholar 

  230. Bano M, Salomon DS, Kidwell WR: Purification of a mammary derived growth factor from human milk and human mammary tumors. J Biol Chem 260: 5745–5752, 1985.

    PubMed  CAS  Google Scholar 

  231. Halper J, Moses HL: Initial purification and characterization of a epithelial tissue-derived transforming growth factor. J Cell Biol 101:235a, 1986. Abstract #931.

    Google Scholar 

  232. Swain S, Dickson RB, Lippman ME: Anchorage independent epithelial colony stimulating activity in human breast cancer cell lines. Proceedings, American Association for Cancer Research Annual Meeting, Los Angeles, CA 1986. Abstract #844.

    Google Scholar 

  233. Abraham JA, Whang JL, Tumolo A, Mergia A, Friedman J, Gospodorowicz D, Fiddles JC: Human basic fibroblast growth factor: nucleotide sequence and genomic organization. EMBO J 5: 2523–2528, 1986.

    PubMed  CAS  Google Scholar 

  234. Liotta LA, Mandler R, Murano G, Katz DA, Gordon RK, Chiang PK, Schiffman E: Tumor cell autocrine motility factor. Proc Natal Acad Sci USA, 83: 3302–3306, 1986.

    CAS  Google Scholar 

  235. Dickson C, Smith R, Brookes S, Peter G: Tumorigenesis by mouse mammary tumor virus: proviral activation of a cellular gene in the common integration region int-2. Cell 37: 529–536, 1984.

    PubMed  CAS  Google Scholar 

  236. Brown AMC, Wildin RS, Prendergast TJ, Varmus HE: A retroviral vector expressing the putative mammary oncogene int-1 causes partial transformation of a mammary epithelial cell line. Cell 46: 1001–1009, 1986.

    PubMed  CAS  Google Scholar 

  237. Dickson C, Peters G: Potential oncogene product related to growth factors. Nature 326: 833, 1987.

    PubMed  CAS  Google Scholar 

  238. Zarbl H, Sukumar S, Arthur AV, Martin-Zanea D, Barbacid M: Direct mutagenesis of Ha-ras-1 oncogenes by N-nitroso-N-methylurea during initiation of mammary carcinogenesis in rats. Nature 315: 382–385, 1985.

    PubMed  CAS  Google Scholar 

  239. Andres AC, Schonenberger CA, Groner B, Hennighausen C, LeMaur M, Gerlinger P: Haras oncogene expression directed by a milk protein gene promoter: tissue specificity, hormonal regulation and tumor induction in transgenic mice. Proc Natl Acad Sci USA 84: 1299–1303, 1987.

    PubMed  CAS  Google Scholar 

  240. Vousden KH, Eccles SA, Purvics H, Marshall CJ: Enhanced spontaneous metastasis of mouse carcinoma cells transfected with an activated c-Ha-ras-1 gene. Int J Cancer 37: 425–533, 1986.

    PubMed  CAS  Google Scholar 

  241. Hynes NE, Jaggi R, Kozma R, Ball R, Muellener D, Wetherall NT, Davis BW, Groner B: New acceptor cell for transfected genomic DNA: oncogene transfer into a mouse mammary epithelial cell line. Mol Cell Biol 5: 268–272, 1985.

    PubMed  CAS  Google Scholar 

  242. Pulciani S, Santos E, Long LK, Sorrentino V, Barbacid M: ras gene amplification and malignant transformation. Mol Cell Biol 5: 2836–2841, 1985.

    PubMed  CAS  Google Scholar 

  243. Lumpkin CK, Knepper JE, Butel JS, Smith JR, Pereiva-Smith OM: Mitogenic effects of the protooncogene and oncogene forms of c-H-ras DNA in human diploid fibroblasts. Mol Cell Biol 6: 2990–2993, 1986.

    PubMed  CAS  Google Scholar 

  244. McKay IA, Marshall CJ, Cales C, Hall A: Transformation and stimulation of DNA synthesis in NIH-3T3 cells are a titratable function of normal p 21N-ras expression. EMBO J 5: 2617–2621, 1986.

    PubMed  CAS  Google Scholar 

  245. Greig RG, Koestler TP, Trainer DL, Corwin SP, Miles L, Kline T, Sweet R, Yokoyama S, Poste G: Tumorigenic and metastatic properties of ‘normal’ and ras-transfected NIH-3T3 cells. Proc Natl Acad Sci USA 82: 3698–3701, 1985.

    PubMed  CAS  Google Scholar 

  246. Egan SE, McClarty GA, Jarolim L, Wright JA, Spiro I, Hager G, Greenberg AH: Expression of H-ras correlates with metastatic potential: evidence for direct regulation of the metastatic phenotype in 10 T1/2 and NIH 3T3 cells. Mol Cell Biol 7: 830–837, 1987.

    PubMed  CAS  Google Scholar 

  247. Stenman G, Delorme EO, Law CC, Sager R: Transfection with plasmid pSV2gpt EJ induces chromosome rearrangements in CHEF cells. Proc Natl Acad Sci USA 84: 184–188, 1987.

    PubMed  CAS  Google Scholar 

  248. Bishop JM: The molecular genetics of cancer. Science 235: 305–311, 1987.

    PubMed  CAS  Google Scholar 

  249. Slamon DJ, DeKernion JB, Verma IM, Cline MJ: Expression of cellular oncogenes in human malignancies. Science 224: 256–262, 1984.

    PubMed  CAS  Google Scholar 

  250. Perucho M, Goldfarb M, Shimizu K, Lama C, Fogh J, Wigler M: Human tumor-derived cell lines contain common and different transforming genes. Cell 27: 467–476, 1981.

    PubMed  CAS  Google Scholar 

  251. Kraus MH, Yuasa Y, Aaronson SA: A position 12-activated H-ras oncogene in all Hs578T mammary carcinosarcoma cells but not normal mammary cells of the same patient. Proc Natl Acad Sci USA 81: 5384–5388, 1984.

    PubMed  CAS  Google Scholar 

  252. Graham KA, Richardson CL, Minden MD, Trent JM, Buick RM: Varying degrees of amplification of the N-ras oncogene in the human breast cancer cell line MCF-7. Cancer Res 45: 2201–2025, 1985.

    PubMed  CAS  Google Scholar 

  253. Theillet C, Lidereau R, Escot C, Hutzell P, Brunet M, Gest J, Schlom J, Callahan R: Loss of a c-H-ras-1 allele and aggressive human primary breast carcinomas. Cancer Res 46: 4776–4781, 1986.

    PubMed  CAS  Google Scholar 

  254. Lane MA, Sainten A, Cooper GM: Activation of related transforming genes in mouse and human mammary carcinomas. Proc Natl Acad Sci USA 78: 5185–5189, 1981.

    PubMed  CAS  Google Scholar 

  255. Becker D, Lane MA, Cooper GM: Identification of an antigen associated with transforming genes of human and mouse mammary carcinomas. Proc Nat Acad Sci USA 79: 3315–3319, 1982

    PubMed  CAS  Google Scholar 

  256. Fasano O, Birnbaum N, Edlund L, Fogh J, Wigler M: New human transforming genes detected by a tumorigenicity assay. Mol Cell Biol 4: 1695–1705, 1984.

    PubMed  CAS  Google Scholar 

  257. Young D, Waitches G, Birchmeier C, Fasano O, Wigler M: Isolation and characterization of a new cellular oncogene encoding a protein with multiple potential transmembrane domains. Cell 45: 711–719, 1986.

    PubMed  CAS  Google Scholar 

  258. Leder P, Battey J, Lenoir G, Moulding C, Murphy W, Potter H, Stewart T, Taub R. Translocations among antibody genes in human cancer. Science 222: 765–771, 1983.

    PubMed  CAS  Google Scholar 

  259. Blanchard J-M, Piechaczyk M, Dani C, Chambard C, Franchi A, Pouyssegur J, Jeanteur P: c-myc gene is transcribed at high rate in Go-arrested fibroblasts and is post-transcriptionally regulated in response to growth factors. Nature 317: 443–445, 1985.

    PubMed  CAS  Google Scholar 

  260. Armelin HA, Armelin MCS, Kelly K, Stewart T, Leder P, Cochran BH, Stiles CD: Functional role for c-myc in mitogenic response to platelet-derived growth factor. Nature 310: 655–660, 1984.

    PubMed  CAS  Google Scholar 

  261. Hann SR, Thompson CB, Eiserman RN: c-myc oncogene protein synthesis is independent of the cell cycle in human and avian cells. Nature 314: 366–369, 1985.

    PubMed  CAS  Google Scholar 

  262. Studzinski GP, Brelvi ZS, Feldman SC, Watt RA: Participation of c-myc protein in DNA synthesis of human cells. Science 234: 467–470, 1986.

    PubMed  CAS  Google Scholar 

  263. King MC, Go RC, Elston RC, Lynch HL, Petrakis NL: Allele increasing susceptibility to human breast cancer may be linked to glutamate-pyruvate transaminase locus. Science 208: 406–408, 1980.

    PubMed  CAS  Google Scholar 

  264. Kozbor D, Croce CM: Amplification of the c-myc oncogene in one of five human breast carcinoma cell lines. Cancer Res 44: 438–41, 1984.

    PubMed  CAS  Google Scholar 

  265. Modjtahedi N, Lavialle C, Poupon ME, Landin RM, Cassingena R, Monier R, Brison O: Increased level of amplification of the c-myc oncogene in tumors induced in nude mice by a human breast carcinoma cell line. Cancer Res 45:4372–4379, 1985.

    PubMed  CAS  Google Scholar 

  266. Stewart TA, Pattengale PK, Leder P: Spontaneous mammary adenocarcinoma in transgenic mice that carry and express MTV/myc fusion genes. Cell 38: 627–637, 1984.

    PubMed  CAS  Google Scholar 

  267. Escot C, Theillet C, Lidereau R, Spyratos E, Champene MH, Gest J, Callahan R: Genetic alterations of the c-myc protooncogene (MYC) in human primary breast carcinomas. Proc Nat Acad Sci USA 83: 4834–4838, 1986.

    PubMed  CAS  Google Scholar 

  268. Wilding G, Lippman ME, Gelmann E: The effects of steroid hormones and peptide growth factors on protooncogene c-fos and s-myc expression in human breast cancer cells. Cancer Research in press, 1988.

    Google Scholar 

  269. Santos GF, Lee W, Benz C: Post-transcriptional regulation of biphasic c-myc breast cancer cells. Proceedings of the 78th Annual Meeting of the American Association for Cancer Research, Atlanta, Georgia, Abstract #88, 1987.

    Google Scholar 

  270. Bernards R, Dessair SK, Weinberg RA: N-myc amplification causes down-modulation of MHC class I antigen expression in neuroblastoma. Cell 47: 667–674, 1986.

    PubMed  CAS  Google Scholar 

  271. O’Brien SJ, Nash WG, Goodwin JL, Lowy DR, Chang EH: Dispersion of the ras family of transforming genes to four different chromosomes in man. Nature 302: 839–842, 1983.

    PubMed  Google Scholar 

  272. Hall A, Marshall EJ, Spurr NK, Weiss RA: Identification of transforming gene in two human sarcoma cell lines as a new member of the ras family located on chromosome 1. Nature 303: 396–400, 1983.

    PubMed  CAS  Google Scholar 

  273. Spandidos DA, Agnantis RJ: Human malignant tumors of the breast, as compared to their respective normal tissue, have elevated expression of the Harvey ras oncogene. Anticancer Res, 4: 269–272, 1984.

    PubMed  CAS  Google Scholar 

  274. Agnantis NJ, Parissi P, Anagnostakis D, Spandidos DA: Comparative study of Harvey ras oncogene expression with conventional clinicopathologic parameters of breast cancer. Oncology 43: 36–39, 1986.

    PubMed  CAS  Google Scholar 

  275. DeBortoli ME, Abou-Issa H, Haley BE, Cho-Chung YS: Amplified expression of p21 ras protein in hormone-dependent mammary carcinomas of humans and rodents. Biochem Biophys Res Commun 127: 699–706, 1985.

    PubMed  CAS  Google Scholar 

  276. Hand PH, Thor A, Wunderlich D, Muraro R, Caruso A, Schlom J: Monoclonal antibodies of predefined specificity detect activated ras gene expression in human mammary and colon carcinomas. Proc Nat Acad Sci USA 81: 5227–5231, 1984.

    PubMed  CAS  Google Scholar 

  277. Tanaka T, Slamon D, Battifora H, Cline MJ: Expression of p21 ras oncoproteins in human cancers. Cancer Res 46: 1465–1470, 1986.

    PubMed  CAS  Google Scholar 

  278. Ohuchi N, Thor A, Page DL, Hand PH, Halter S, Schlom J: Expression of the 21,000 molecular weight ras protein in a spectrum of benign and malignant human mammary tissues. Cancer Res 46: 2511–2519, 1986.

    PubMed  CAS  Google Scholar 

  279. Liderau R, Escot C, Theillet C, Champeme MH, Brunei M, Gest J, Callahan R: High frequency of rare alleles of the human c-Ha-ras-1 protooncogene in breast cancer patients. J Natl Cancer Inst 77: 699–701, 1986.

    Google Scholar 

  280. Downward J, Yarden Y, Mayes E, Scrace G, Stockwell P, Ullrich A, Schlessinger J, Waterfield MD: Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature 307: 521–527, 1984.

    PubMed  CAS  Google Scholar 

  281. Coussens L, Yang-Feng TL, Liao YC, Chen E, Schlessinger J, Francke U, Levinson A, Ullrich A: Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science 320: 1132–1139, 1985.

    Google Scholar 

  282. Bargmann CI, Hung MC, Weinberg RA: Multiple independent activations of the neu oncogene by a point mutation altering the transmembrane domain of pl85. Cell 45: 649–657, 1986.

    PubMed  CAS  Google Scholar 

  283. King CR, Kraus MH, Aaronson SA: Amplification of a novel v-erbB related gene in a human mammary carcinoma. Science 229: 974–976, 1985.

    PubMed  CAS  Google Scholar 

  284. Yokota J, Toyoshima K, Sugimura T, Yamamoto T, Terada M, Battifora H, Cline MJ: Amplification of c-erbB-2 oncogene in human adenocarcinomas in vivo. Lancet i: 765–766, 1986.

    Google Scholar 

  285. Kraus MH, Popescu NC, Amsbaugh SC, King CR: Overexpression of the EGF-receptor-related proto-oncogene erbB-2 in human mammary tumor cell lines by different molecular mechanisms. EMBO J 6: 605–610, 1987.

    PubMed  CAS  Google Scholar 

  286. Van de Vijver M, Van de Bersselaar R, Devilec P, Cornelisse C, Peterse J, Nusse R: Amplification of the new (c-erbB-2) oncogene in human mammary tumors is relatively frequent and is often accompanied by amplification of the linked c-erbA oncogene. Mol Cell Biol 7: 2019–2023, 1987.

    PubMed  Google Scholar 

  287. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL: Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235: 177–182, 1987.

    PubMed  CAS  Google Scholar 

  288. Sefton BM, Hunter T, Beeman K, Eckhart W: Evidence that the phosphorylation of tyrosine is essential for transformation by Rous sarcoma virus. Cell 20: 807–816, 1980.

    PubMed  CAS  Google Scholar 

  289. Jacobs C, Rubsamen H: Expression of pp60c-src protein kinase in adult and fetal human tissue: high activities in some sarcomas and mammary carcinomas. Cancer Res 43: 1696–1702, 1983.

    PubMed  CAS  Google Scholar 

  290. Rosen N, Bolen JB, Schwartz AM, Cohen P, DeSeau V, Israel MA: Analysis of pp60c-src protein kinase activity in human tumor cell lines and tissues. J Biol Chem 261: 13754–13759, 1986.

    PubMed  CAS  Google Scholar 

  291. Sainsbury JRC, Farndon JR, Sherbet GV, Harris AL: Epidermal growth factor receptors and oestrogen receptors in human breast cancers. Lancet i: 364–366, 1985.

    Google Scholar 

  292. Fitzpatrick SL, Brightwell J, Wittliff JL, Barrows GH, Schultz GS: Epidermal growth factor binding by breast tumor biopsies and relationship to oestrogen receptor and progestin receptor levels. Cancer Res 3448–3453, 1984.

    Google Scholar 

  293. Perez R, Pascual M, Macias A Lage A: Epidermal growth factor receptors in human breast cancer. Breast Cancer Res Treat 4: 189–193, 1984.

    PubMed  CAS  Google Scholar 

  294. Sainsbury JRC, Malcolm AJ, Appleton DR, Farndon JR, Harris AL: Presence of epidermal growth factor receptors as an indicator of poor prognosis in patients with breast cancer. J Clin Path 38: 1225–1228, 1985.

    PubMed  CAS  Google Scholar 

  295. Fitzpatrick SL, Brightwell J, Wittliff JL, Barrows GH, Schultz GS: Epidermal growth factor binding by breast tumor biopsies and relationship to estrogen receptor and progesterone receptor levels. Cancer Res 44: 3448–3453, 1984.

    PubMed  CAS  Google Scholar 

  296. Sainsbury JRC, Farndon JR, Needham GK, Malcolm AJ, Harris AL: Epidermal growth factor receptor status of human breast cancer is related to early recurrence and death. Lancet 1: 1398–1402, 1987.

    PubMed  CAS  Google Scholar 

  297. Filmus J, Pollak MN, Cailleau R, Buick RN: MDA-468, a human breast cancer cell line with a high number of epidermal growth factor (EGF) receptors, has an amplified GF receptor gene and is growth inhibited by EGF. Biochem Biophys Res Comm 128: 88–905, 1985.

    Google Scholar 

  298. Filmus J, Trent JM, Polak MN, Buick RN: Epidermal growth factor receptor gene-amplified MDA-468 breast cancer cell line and its non-amplified variants. Mol Cell Biol 7: 251–257, 1987.

    PubMed  CAS  Google Scholar 

  299. Santon JB, Cronin MT, Macleod CL, Mendelsohn J, Masui H, Gill GN: Effects of epidermal growth factor receptor concentration or tumorigenicity of A431 cells in nude mice. Cancer Res 46: 4701–4705, 1986.

    PubMed  CAS  Google Scholar 

  300. Neal DE, Bennett MK, Hall, RR, Marsh C, Abel PD, Sainsbury JRC, Harris AL: Epidermal growth factor receptors in human bladder cancer: comparison of invasive and superficial tumors. Lancet i: 366–368, 1985.

    Google Scholar 

  301. Real FX, Rettig WJ, Chesa PG, Mclamed MR, Old LJ, Mendelsohn J: Expression of epidermal growth factor receptor in human cultured cells and tissues: relationship to cell lineage and tissues: relationship to cell lineage and stage of differentiation. Cancer Res 46: 4726–4731, 1986.

    PubMed  CAS  Google Scholar 

  302. Stampfer MR, Bartley JC: Induction of transformation and continuous cell lines from normal human mammary epithelial cells after cells exposure to benzo[a]pyrene. Proc Natl Acad Sci USA 82: 2394–2398, 1985.

    PubMed  CAS  Google Scholar 

  303. Clark R, Stampfer MR, Milley R, O’Rourke C, Walen KH, Kriegler M, Kopplin J and McCormick F: Transformation of human mammary epithelial cells by oncogenic viruses. Cancer Res, in press, 1988.

    Google Scholar 

  304. Garcia I, Sordat B, Raucicio-Farnin E, Dunand M, Kraehenbuhl JP Diggelmann H: Establishment of two rabbit mammary epithelial cell lines with distinct oncogenic potential and differentiated phenotype after microinjection of transforming genes. Mol Cell Biol 6: 1974–1982, 1986.

    PubMed  CAS  Google Scholar 

  305. Kasid A, Lippman ME, Papageorge AG, Lowy DR, Gelmann EP: Transfection of v-rasH DNA into MCF-7 cells bypasses their dependence on estrogen for tumorigenicity. Science 228: 725–728, 1985.

    PubMed  CAS  Google Scholar 

  306. Worland PJ, Bronzert DA, Dickson RB, Lippman ME, Thorgeirsson SS, Wirth PJ: Cellular polypeptide patterns of MCF-7 and transfected MCF-7 (ras) human breast cancer cells. J Cell Biochem Supplement 11A, p 84, 1987. Abstract #A293.

    Google Scholar 

  307. Bell RM: Protein kinase C activation by diaglycerol second messengers. Cell 45: 631–632, 1986.

    PubMed  CAS  Google Scholar 

  308. Parker PJ, Coussens L, Totty N, Rhee L, Young S, Chen E, Stabel S, Waterfield MD, Ullrich A: The complete primary structure of protein kinase C—the major phorbol ester receptor. Science 233: 853–858, 1986.

    PubMed  CAS  Google Scholar 

  309. Coussens L, Parker PJ, Rhee L, Yang-Feng TL, Chen E, Waterfield MD, Francke U, Ullrich A: Multiple, distinct forms of bovine and human protein kinase C suggest diversity in cellular signaling pathways. Science 233: 859–866, 1986.

    PubMed  CAS  Google Scholar 

  310. Wakelum MJO, Davies SA, Houslay MD, McKay I, Marshall CJ, Hall A: Normal p21N-ras couples bombesin and other growth factors to inositol phosphate production. Nature 323: 173–176, 1986.

    Google Scholar 

  311. Dickson RB, Kasid A, Huff KK, Bates S, Knabbe C, Bronzert D, Gelmann EP, Lippman ME: Activation of growth factor secretion in tumorigenic states of breast cancer induced by 17β-estradiol or v-rasH oncogene. Proc Natl Acad Sci USA 84: 837–841, 1987.

    PubMed  CAS  Google Scholar 

  312. Salomon DS, Perroteau I, Kidwell WR, Tarn JS, Derynck R: Loss of growth responsiveness to epidermal growth factor and enhanced production of alpha-transforming growth factors in ras-transformed mouse mammary epithelial cells. J Cell Physiol 130: 397–409, 1987.

    PubMed  CAS  Google Scholar 

  313. Masui H, Kawamoto T, Sato JP, Wolt B, Sato G, Mendelsohn J: Growth inhibition of human tumor cells in athymic mice by antiepidermal growth factor receptor monoclonal antibodies. Cancer Res 44: 1002–1012, 1984.

    PubMed  CAS  Google Scholar 

  314. Cuttitta F, Carney DN, Mulshine J, Moody TW, Fedorko J, Fisher A, Minna J: Bombesin-like peptides can function as autocrine growth factors in small cell lung cancer. Nature 316: 823–827, 1985.

    PubMed  CAS  Google Scholar 

  315. Vitella ES, Uhv JW: Immunotoxins: redirecting nature’s poisons. Cell 41: 653–665, 1985.

    Google Scholar 

  316. Pastan I, Willingham MC, Fitzgerald DP: Immunotoxins. Cell 47: 641–648, 1986.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers, Boston/Dordrecht/London

About this chapter

Cite this chapter

Dickson, R.B., Lippman, M.E. (1988). Control of human breast cancer by estrogen, growth factors, and oncogenes. In: Lippman, M.E., Dickson, R.B. (eds) Breast Cancer: Cellular and Molecular Biology. Cancer Treatment and Research, vol 40. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1733-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1733-3_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8975-3

  • Online ISBN: 978-1-4613-1733-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics