Skip to main content

Heterogeneity of genetic alterations in primary human breast tumors

  • Chapter
Breast Cancer: Cellular and Molecular Biology

Part of the book series: Cancer Treatment and Research ((CTAR,volume 40))

Abstract

The etiology of human breast cancer is thought to involve a complex interplay among genetic, hormonal, and dietary factors that are superimposed on the physiological status of the host [1, 2]. As a consequence, several different types of breast tumors can be distinguished by histopathological criteria, chromosomal abnormalities, hormone receptor status, and other biochemical characteristics. However, attempts to derive a cohesive picture of how the various factors participate in the etiology of breast cancer have been confounded by a lack of information on specific genetic mutations associated with the initiation or progression of the disease. Three general approaches have been used to attempt to identify genetic mutations associated with breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Harris JR, Hellman S, Canellos GP, Fisher B: Cancer of the breast. In Cancer principles and practice of oncology, DeVita VT, Hellman S, Rosenberg SA (eds), Philadelphia, JB Lippincott Company, 1982, pp 1119–1178.

    Google Scholar 

  2. Gompel G, Van Kerkern C: The breast. In: Principles of Surgical Pathology, Vol. I, Silverberg S (ed), New York, Wiley Medical Publication, 1983, pp 245–255.

    Google Scholar 

  3. Barker PE, Hsu TC: Double minutes with special reference to breast carcinomas. J Natl Cancer Inst 62: 257–262, 1979.

    PubMed  CAS  Google Scholar 

  4. Kovacs G: Homogeneously staining regions on marker chromosomes in malignancy. Int J Cancer 23: 299–301, 1979.

    Article  CAS  Google Scholar 

  5. Ouinn LA, Moore GE, Morgan RT, Woods LK: Cell lines from human colon carcinoma with unique cell products, double minutes and homogeneously staining regions. Cancer Res 39: 4914–4924, 1979.

    Google Scholar 

  6. Barker PE, Lau YF, Hsu TC: A heterochromatic homogeneously staining region (HSR) in the karyotype of a human breast carcinoma cell line. Cancer Genet Cytogenet 1: 311–319, 1980.

    Article  Google Scholar 

  7. Rodgers CS, Hill SM, Hulten MA: Cytogenetic analysis in human breast carcinoma. I. Nine cases in the diploid range investigated using direct preparations. Cancer Genet Cytogenet 13:95–119, 1984.

    Article  PubMed  CAS  Google Scholar 

  8. Kovacs G, Preferential involvement of chromosome 1q in a primary breast carcinoma. Cancer Genet Cytogenet 3: 115–129, 1981.

    Article  Google Scholar 

  9. Trent JM: Cytogenetic and molecular biologic alterations in human breast cancer: A review. Breast Cancer Res Treat 5: 221–229, 1985.

    Article  PubMed  CAS  Google Scholar 

  10. Satya-Prakash KL, Podhak S, Hsu TC, Olive M, Cailleau R: Cytogenetic analysis on eight human breast tumor cell lines: High frequencies of 1q, 11q, and HeLa-like marker chromosomes. Cancer Genet Cytogenet 3: 61–73, 1981.

    Article  PubMed  CAS  Google Scholar 

  11. Kraus MH, Yuasa Y, Aaronson SA: A position 12-activated H-ras oncogene in all HS578T mammary carcinoma cells but not normal mammary cells of the same patient. Proc Natl Acad Sci USA 81: 5384–5388, 1984.

    Article  PubMed  CAS  Google Scholar 

  12. Fasano O, Birnbaum D, Edlund L, Fogh J, Wigler M: New human transforming genes detected by a tumorigenicity assay. Mol Cell Biol 4: 1695–1705, 1984.

    PubMed  CAS  Google Scholar 

  13. Groner B, Kozma S, Hynes NE, Redmond S, Jaggi R, Gunzburg W, Slamons B, Ball R, Buser K, Reichmann E, Anders AC: The search for oncogenes in breast cancer. In: Breast cancer: origins, detection and treatment, Rich MA, Hager JC, Taylor-Papadimitriou J (eds), Boston, Martinus Nijhoff, 1985. pp 195–204.

    Google Scholar 

  14. Manolagas SC, Provvedini DM, Murray EJ, Murray SS, Tsonis PA, Spandialos DA: Association between the expression of the c-myc oncogene mRNA and the expression of the receptor protein for 1,25-dihydroxyvitamin D3. Proc Natl Acad Sci USA 84: 856–860, 1987.

    Article  PubMed  CAS  Google Scholar 

  15. Kasid A, Lippman ME, Papageorge AG, Lowy DR, Gelmann EP: Transfection of v-ras H DNA into MCF-7 human breast cancer cells bypasses dependence on estrogen for tumo-rigenicity. Science 228: 725–728, 1985.

    Article  PubMed  CAS  Google Scholar 

  16. Graham KA, Richardson CL, Minden MD, Trent JM, Buick, RN: Varying degrees of amplification of the N-ras oncogene in the human breast cancer cell line MCF7. Cancer Res 45: 2201–2205, 1985.

    PubMed  CAS  Google Scholar 

  17. Kozbor D, Croce C: Amplification of the c-myc oncogene in one of five human breast carcinoma cell lines: Cancer Res 44: 438–441, 1984.

    PubMed  CAS  Google Scholar 

  18. Modjtahedi N, Lavielle C, Poupon M-F, Landin RM, Cassingena R, Monier R, Brison O: Increased level of amplification of the c-myc oncogene in tumors induced in nude mice by a human breast carcinoma cell line. Cancer Res 45: 4372–4379, 1985.

    PubMed  CAS  Google Scholar 

  19. King CR, Kraus MH, Aaronson SA: Amplification of a novel v-erb B related gene in a human mammary carcinoma. Science 229: 974–976, 1985.

    Article  PubMed  CAS  Google Scholar 

  20. Aaronson SA, Tronick SR: The role of oncogenes in human neoplasia. In: Important Advances in Oncology 1985, DeVita VT, Hellman S, Rosenberg SA (eds), Philadelphia, J.B. Lippincott Company, 1985, pp. 3–15.

    Google Scholar 

  21. Bishop JM: The molecular genetics of cancer. Science 235: 305–311, 1987.

    Article  PubMed  CAS  Google Scholar 

  22. Alitalo K: Amplification of cellular oncogene in cancer cell. Med Biol 62: 304–317, 1984.

    PubMed  CAS  Google Scholar 

  23. Rabbits TH: The c-myc proto-oncogene: Involvement in chromosomal abnormalities. Trends Genet 1: 327–331, 1985.

    Article  Google Scholar 

  24. Alitalo K, Schwab M, Lin CC, Varmus HE, Bishop JM: Homogeneously staining chromosomal regions contain amplified copies of an abundantly expressed cellular oncogene (c-myc) in malignant neuroendocrine cells from a human colon carcinoma. Proc Natl Acad Sci USA 80: 1707–1711, 1983.

    Article  PubMed  CAS  Google Scholar 

  25. Dalla Favera R, Wong-Staal F, Gallo RC: One gene amplification in promyelocytic leukemia cell line HL-60 and primary leukemic cells of the same patient. Nature 299: 61–63, 1982.

    Article  Google Scholar 

  26. Schwab M, Alitalo K, Klempnauer K-H, Varmus HE, Bishop JM, Gilbert F, Brodeur G, Goldstein M, Trent J: Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumour. Nature 305: 245–248, 1983.

    Article  PubMed  CAS  Google Scholar 

  27. Little CD, Nau MM, Calney DN, Gazdar AF, Minna JD: Amplification and expression of the c-myc oncogene in human lung cancer cell lines. Nature 306: 194–196, 1983.

    Article  PubMed  CAS  Google Scholar 

  28. Nau MM, Brooks BJ, Battery J, Sausville E, Gazdar AF, Kirsh JR, McBride DW, Beetness V, Hollis GF, Minna JD: L-myc, a new myc-related gene amplified in human small cell lung cancer. Nature 318: 69–73, 1985.

    Article  PubMed  CAS  Google Scholar 

  29. Stewart T, Pattengale P, Leder P: Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes. Cell 38: 627–637, 1984.

    Article  PubMed  CAS  Google Scholar 

  30. Escot C, Theillet C, Lidereau R, Spyratos F, Champeme MH, Gest J, Callahan R: Genetic alteration of the c-myc proto-oncogene in human primary breast carcinoma. Proc Natl Acad Sci USA 83: 4834–4838, 1986.

    Article  PubMed  CAS  Google Scholar 

  31. Lidereau R, Mathieu-Mahul D, Theillet C, Renaud M, Manchauffe M, Gest J, Larsen CJ: Presence of allelic EcoRI restriction fragment of the c-mos locus in leukocyte and tumor cell DNAs of breast cancer patients. Proc Natl Acad Sci USA 82: 7068–7070, 1985.

    Article  PubMed  CAS  Google Scholar 

  32. Yokota J, Tsunetsugu-Yokota Y, Battifora H, LeFevre C, Cline MJ: Alterations of myc, myb and ras Ha proto-oncogenes in cancers are frequent and show clinical correlation. Science 231: 261–265, 1986.

    Article  PubMed  CAS  Google Scholar 

  33. Slamon DJ, de Kernion JB, Verma IM, Cline MJ: Expression of cellular oncogenes in human malignancies. Science 224: 256–262, 1984.

    Article  PubMed  CAS  Google Scholar 

  34. Erisman MD, Rothberg PG, Diehl RE, Morse CC, Spandorfer JM, Actrin SM: Deregulation of c-myc gene expression in human colon carcinoma is not accompanied by amplification or rearrangement of the gene. Mol Cell Biol 5: 1969–1976, 1985.

    PubMed  CAS  Google Scholar 

  35. Mariani-Costantini R, Escot C, Theillet C, Gentile A, Merlo G, Lidereau R, Callahan R: In situ c-myc expression and genomic status of the c-myc locus in infiltrating ductal carcinomas of the breast. Cancer Res 48:199–205, 1988.

    PubMed  CAS  Google Scholar 

  36. Callahan R: Retrovirus and proto-oncogene involvement in the etiology of breast neoplasia. In: The mammary gland: development, regulation, and function, Neville P, Daniel C (eds), New York, Plenum Press, in press, 1987.

    Google Scholar 

  37. Nusse R: this volume.

    Google Scholar 

  38. Varmus HE: Recent evidence for oncogenesis by insertion mutagenesis and gene activa tion. Cancer Surv 1: 309–319, 1982.

    Google Scholar 

  39. Nusse R, Varmus H: Mammary tumor induced by the mouse mammary tumor virus: Evidence for a common region for provirus integration in the same region of the host genome. Cell 31: 99–109, 1982.

    Article  PubMed  CAS  Google Scholar 

  40. Peters G, Brookes S, Smith R, Dickson C: Tumorigenesis by mouse mammary tumor virus: Evidence for a common region for provirus integration in mammary tumors. Cell 33: 369–377, 1983.

    Article  PubMed  CAS  Google Scholar 

  41. Gallahan D, Callahan R: Mammary tumorigenesis in feral mice: Identification of a new int locus in MMTV (Czech II)-induced mammary tumors. J Virol 61: 66–76, 1986.

    Google Scholar 

  42. Nusse R, van Ooyen A, Cox D, Fung Y-K, Varmus H: Mode of proviral activation of a putative mammary oncogene (int-1) on mouse chromosome 15. Nature 307: 131–136, 1984.

    Article  PubMed  CAS  Google Scholar 

  43. Dickson C, Smith R, Brookes S, Peters G: Tumorigenesis by mouse mammary tumor virus: Proviral activation of a cellular gene in the common integration region int-2. Cell 37: 529–536, 1984.

    Article  PubMed  CAS  Google Scholar 

  44. Jakobovits A, Shackleford GM, Varmus HE, Martin GR, Two proto-oncogenes implicated in mammary carcinogenesis, int-1 and int-2, are independently regulated during mouse development. Proc Natl Acad Sci USA 83: 7806–7810, 1986.

    Article  PubMed  CAS  Google Scholar 

  45. Peters G, Lee AE, Dickson C: Activation of cellular gene by mouse mammary tumor virus may occur early in mammary tumor development. Nature 309: 273–275, 1986.

    Article  Google Scholar 

  46. Brown AMC, Wildin RS, Prendergast TJ, Varmus HE, A retrovirus vector expressing the putative mammary oncogene int-1 causes partial transformation of a mammary epithelial cell line. Cell 46: 1001–1009, 1987.

    Article  Google Scholar 

  47. Rijsewijk R, Van Deemter L, Wagenaar E, Sonnenberg A, Nusse R: Transfection of the int-1 mammary oncogene in cuboidal RAC mammary cell line results in morphological transformation and tumorigenicity. EMBO J 6: 127–131, 1987.

    PubMed  CAS  Google Scholar 

  48. Lidereau R, Callahan R, Escot C, Dickson C, Peters G, Ali IU: Amplification of MMTV-related int-2 locus in primary human breast tumors, Oncogene Res 2, 285–291, 1988.

    PubMed  CAS  Google Scholar 

  49. Casey G, Smith R, McGillivray D, Peters G, Dickson, C: Characterization and chromosome assignments of the human homolog of int-2, a potential proto-oncogene. Mol Cell Biol 6: 502–510, 1986.

    PubMed  CAS  Google Scholar 

  50. Shih C, Padney L, Murray M, Weinberg RA: Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature 290, 261–264, 1981.

    Article  PubMed  CAS  Google Scholar 

  51. Schechter AL, Hung MC, Valdyanathan L, Weinberg RA, Yang-Feng TL, Francke U, Ullrich A, Coussens L: The neu gene: An erb B homologous gene distinct from and unlinked to the gene encoding the EGF receptor. Science 229: 976–978, 1985.

    Article  PubMed  CAS  Google Scholar 

  52. Schechter AL, Stern DF, Valdyanathan L, Decker SJ, Drebin JA, Greene ME, Weinberg RA, The neu oncogene: an erb B related gene encoding a 185,000-M tumor antigen. Nature 312: 513–516, 1984.

    Article  PubMed  CAS  Google Scholar 

  53. Coussens L, Yang-Feng TL, Liao Y-C, Chen E., Gray A, McGrath J, Seeburg PH, Libermann TA, Schlessinger J, Francke U, Levinson A, and Ullirch A (1985). Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science 230, 1132–1139.

    Article  PubMed  CAS  Google Scholar 

  54. Semba K, Kamata N, Toyoshima F, Yamamoto T: A v-erb B related protooncogene, c-erb B-2, is distinct from the c-erb B-1/EGF receptor gene and is amplified in a human salivary gland adenocarcinoma. Proc Natl Acad Sci USA 82: 6497–6501, 1985.

    Article  PubMed  CAS  Google Scholar 

  55. Fukushige SI, Mastsubara KI, Yoshida M, Sasaki M, Suzuki T, Semba K, Toyoshima K, Yamamoto T, Localization of a novel v-erb B related gene, c-erb B-2, on human chromosome 17 and its amplification in a gastric cancer cell line. Mol Cell Biol 6: 955–958, 1986.

    PubMed  CAS  Google Scholar 

  56. Slamon DJ, Clark GM, Wong SG, Levin WS, Ullrich A, McGuire WL, Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235: 177–182, 1987.

    Article  PubMed  CAS  Google Scholar 

  57. Brodeur GM, Seager RC, Schwab M, Varmus HE, Bishop JM: Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 224: 1121–1124, 1984.

    Article  PubMed  CAS  Google Scholar 

  58. Ali IU, Campbell G, Lidereau R, and Callahan R: Is there evidence for an association between c-erb B2 amplification and aggressiveness of human breast carcinoma? Science in press.

    Google Scholar 

  59. Ali IU, Campbell G, Lidereau R, and Callahan R: Lack of evidence for the prognostic significance of c-erbB-2 in human breast carcinoma. Oncogene Research in press.

    Google Scholar 

  60. van de Vijver M, van de Bersselaar R, Devilee P, Cornelisse C, Peterse J, Nusse R: Amplification of neu (c-erb B-2) oncogene in human mammary tumors is relatively frequent and is often accompanied by amplification of the linked c-erb A oncogene. Mol Cell Biol. In press, 1987.

    Google Scholar 

  61. Spurr NK, Solomon B, Jansson M, Sheer D, Goodfellow PN, Bodmer WF, Venstrom B: Chromosomal location of the human homologues to the oncogenes erb A and B. EMBO J 3: 159–163, 1984.

    PubMed  CAS  Google Scholar 

  62. Mathieu-Mahul D, Xu DO, Lidereau R, Galibelt F, Berger R, Mauchauffe M, Larsen CJ: An EcoRI restriction fragment length polymorphism (RFLP) in the human c-erb A locus: Hum Genet 71: 41–44, 1985.

    Article  PubMed  CAS  Google Scholar 

  63. Isobe M, Emmanuel BS, Givol D, Oren M, Croce CM: Localization of the gene for human p53 tumor antigen to band 17pl3. Nature 320: 84–85, 1986.

    Article  PubMed  CAS  Google Scholar 

  64. Capon DJ, Chen EY, Levinson AD, Seeburg PH, Goeddel DB, Complete nucleotide sequences of the T24 human bladder carinoma oncogene and its normal homologue. Nature 302: 33–37, 1983.

    Article  PubMed  CAS  Google Scholar 

  65. Krontiris TG, DiMartino NA, Colb M, Parkinson DR: Unique allelic restriction fragments of the human Ha-ras locus in leukocyte and tumor DNAs of cancer patients. Nature 313: 369–374, 1985.

    Article  PubMed  CAS  Google Scholar 

  66. Lidereau R, Escot C, Theillet C, Champeme MH, Brunet M, Gest J, Callahan R: High frequency of rare alleles of the human c-Ha-ras-1 p-rotooncogene in breast cancer patients. J Natl Cancer Inst 77: 697–701, 1986.

    PubMed  CAS  Google Scholar 

  67. Horan Hand P, Thor A, Wunderlich D, Muraro R, Caruso A, Schlom J: Monoclonal antibodies of predefined specificity detect activated ras gene expression in human mammary and colon carcinomas. Proc Natl Acad Sci USA 81: 5227–5231, 1984.

    Article  PubMed  CAS  Google Scholar 

  68. Theillet C, Lidereau R, Escot C, Hutzell P, Brunet M, Gest J, Schlom J, Callahan R, Frequent loss of a H-ras-1allele correlates with aggressive human primary breast carcinomas. Cancer Res 46: 4476–4781, 1986.

    Google Scholar 

  69. Spandidos DA, Agnantis NJ: Human malignant tumors of the breast, as compared to their respective normal tissue, have elevated expression of the Harvey-ras oncogene. Anticancer Res 4: 269–279, 1984.

    PubMed  CAS  Google Scholar 

  70. Lidereau R, Simpson J, Thor A, Ohuchi N, Gentile A, Schlom J, Callahan R: A correlation between c-H-ras-1 genotype and ras p21 expression in primary human breast tumors. Manuscript in preparation, 1988.

    Google Scholar 

  71. Ohuchi N, Thor A, Page DL, Horan Hand P, Halter SA, Schlom J: Expression of the 21,000 molecular weight ras protein in a spectrum of benign and malignant human mammary tumors. Cancer Res 46: 2511–2519, 1986.

    PubMed  CAS  Google Scholar 

  72. Theillet C, Mariani-Costantini R, Hutzell P, Merlo G, French D, Schlom J, Callahan R, The c-myc and c-H-ras-1 proto-oncogenes in primary human colon adenocarcinomas: Gene structure and expression. Submitted to J Histochem Cytochem, 1988.

    Google Scholar 

  73. Heighway J, Thatcher N, Cerny T, Hasleton PS: Genetic predisposition to human lung cancer. Br J Cancer 53: 453–457, 1986.

    Article  PubMed  CAS  Google Scholar 

  74. Thein SL, Oscier DG, Flint J, Wainscoat JS: Ha-ras hypervariable alleles in myelodysplasia. Nature 321: 84–85, 1986.

    Article  PubMed  CAS  Google Scholar 

  75. Gerhard DS, Dracopoli NC, Bale SJ, Houghton AN, Watkins P, Payne CE, Greene MH, Housman DE: Evidence against Ha-ras-1 involvement in sporadic and familial melanoma. Nature 325: 73–75, 1987.

    Article  PubMed  CAS  Google Scholar 

  76. Knudson AG: Mutation and cancer: Statistical study of retinoblastoma. Proc Natl Acad Sci USA 68: 820–823, 1971.

    Article  PubMed  Google Scholar 

  77. Cavenee WK, Dryja TP, Phillips RA, Benedict WF, Godbort R, Gallie BL, Murphee AL, Strong LC, White RL: Expression of recessive alleles by chromosomal mechanism in retinoblastoma. Nature 305: 779–784, 1983.

    Article  PubMed  CAS  Google Scholar 

  78. Benedict WF, Murphee AL, Banerjee A, Spina CA, Sparkes MC, Sparkes RS: Patient with 13 chromosome deletion: Evidence that the retinoblastoma gene is a recessive cancer gene. Science 219: 973–975, 1983.

    Article  PubMed  CAS  Google Scholar 

  79. Dryja TP, Cavanee W, White R, Rapaport JM, Peterson R, Albert DM, Burns GAP: Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. N Engl J Med 310: 550–553, 1984.

    Article  PubMed  CAS  Google Scholar 

  80. Koufos A, Hansen MF, Copeland NG, Jenkins NA, Lampkin BC, Cavanee WK: Loss of heterozygosity in three embryonal tumors suggests a common pathogenetic mechanism. Nature 316: 330–334, 1985.

    Article  PubMed  CAS  Google Scholar 

  81. Koufos A, Hansen MF, Lampkin BC, Wakman ML, Copeland NG, Jenkins NA, Cavanee WK: Loss of allele at loci on human chromosome 11 during genesis of Wilms’ tumor. Nature 309: 170–172, 1984.

    Article  PubMed  CAS  Google Scholar 

  82. Orkin SH, Goldman DS, Sallan SE: Development of homozygosity for chromosome 11p markers in Wilms’ tumor. Nature 309: 172–178, 1984.

    Article  PubMed  CAS  Google Scholar 

  83. Reeve AE, Harsiaux PJ, Gardner RJM, Chewings WE, Grindley RM, Millow LJ: Loss of Harvey ras allele in sporadic Wilms’ tumour. Nature 309: 174–176, 1984.

    Article  PubMed  CAS  Google Scholar 

  84. Fearon ER, Vogelstein B, Feinberg AP: Somatic deletion and duplication of genes on chromosome 11 in Wilms’ tumors. Nature 309: 176–178, 1984.

    Article  PubMed  CAS  Google Scholar 

  85. Fearon ER, Feinberg AP, Hamilton SH, Vogelstein B: Loss of genes on the short arm of chromosome 11 in bladder cancer. Nature 318: 377–380, 1985.

    Article  PubMed  CAS  Google Scholar 

  86. Seizinger BR, Martuza RL, Gusella JF: Loss of genes on chromosome 22 in tumorigenesis of human acoustic neuroma. Nature 322: 644–647, 1986.

    Article  PubMed  CAS  Google Scholar 

  87. Mukai S, Dryja TP: Loss of alleles at polymorphic loci on chromosome 2 in uveal mela noma. Cancer Genet Cytogenet 22: 45–53, 1986.

    Article  PubMed  CAS  Google Scholar 

  88. Knudson AG: Model hereditary cancers of man. Prog Nucleic Acid Res Mol Biol 29: 17–25, 1983.

    Article  PubMed  CAS  Google Scholar 

  89. Ali IU, Lidereau R, Thiellet C, Callahan R: Reduction to homozygosity of genes on chromosome 11 in human breast neoplasia. Science 238:185–188, 1987.

    Article  PubMed  CAS  Google Scholar 

  90. Turleau C, de Grouchey J, Nihoul-Fekete C, Dufier JL, Chavin-Colin F, Junien C: Del llpl3/nephroblastoma without aniridia, Hum Genet 67: 455–456, 1984.

    Article  PubMed  CAS  Google Scholar 

  91. Michalopoulos EE, Bevilacqua PJ, Stokoe N, Powers VE, Willard HF, Lewis WH: Molecular analysis of gene deletion in aniridia-Wilms’ tumor association. Hum Genet 70: 157–162, 1985.

    Article  PubMed  CAS  Google Scholar 

  92. Van Heyningen V, Boyd PA, Seawright A, Fletcher JM, Fantes JA, Buckton KE, Spowart G, Porteous DJ, Hill RE, Newton MS, Hastie ND: Molecular analysis of chromosome 11 deletions in aniridia-Wilms’ tumor syndrome. Proc Natl Acad Sci USA 82: 8592–8596, 1985.

    Article  Google Scholar 

  93. Glaser T, Lewis WH, Bruns GAP, Watkins PC, Rogler CE, Shows TB, Powers VE, Willand HF, Goguen JM, Simola KOJ, Housman DE: The subunit of follicle-stimulating hormone is deleted in patients with aniridia and Wilms’ tumor, allowing a further definition of the WGAR locus. Nature 321: 882–887, 1986.

    Article  PubMed  CAS  Google Scholar 

  94. Clark GM, McGuire WL, Hubag CA, Pearson OH, Marshall JS: Progresterone receptors as a prognostic factor in stage II breast cancer. N Engl J Med 309: 1343–1347, 1983.

    PubMed  CAS  Google Scholar 

  95. Murphee AL, Benedict WF: Retinoblastoma: Clues to human oncogenesis. Science 223: 1028–1033, 1984.

    Article  Google Scholar 

  96. Cavanee WK, Hansen MF, Nordenskjold M, Kock E, Maumenee I, Squire JA, Phillips RA, Gallie BL: Genetic origin of mutations predisposing to retinoblastoma. Science 228: 501–503, 1985.

    Article  Google Scholar 

  97. Dracapoli NC, Houghton AN, Lloyd JO: Loss of polymorphic restriction fragments in malignant melanoma: Implication for tumor heterogeneity. Proc Natl Acad Sci USA 82: 1470–1474, 1985.

    Article  Google Scholar 

  98. Stanbridge EJ: A case for human tumor-suppressor genes. BioEssays 3: 252–255, 1985.

    Article  PubMed  CAS  Google Scholar 

  99. Sager R: Genetic suppression of tumor formation: A new frontier in cancer research. Cancer Res 46: 1573–1580, 1986.

    PubMed  CAS  Google Scholar 

  100. Stanbridge EJ, Flandermeyer RR, Daniels DW, Nelson-Rees WA, Specific chromosome loss associated with the expression of tumorigenicity in human cell hybrids. Somatic Cell Genet 7: 699–712, 1981.

    Article  PubMed  CAS  Google Scholar 

  101. Kaelbling M, Klinger HP: Suppression of tumorigenicity in somatic cell hybrids. III. Cosegregation of human chromosome 11 of a normal cell and suppression of tumorigenicity in intraspecies hybrids of normal diploid X malignant cells. Cytogenet Cell Genet 41: 65–70, 1985.

    Article  Google Scholar 

  102. Keijzer W, Jaspers NGJ, Abrahams PJ, Taylor AMR, Arlett CF, Zelle B, Takebe H, Kinmont PDS, Bootsma D: A seventh complementation group in xeroderma pigmentosum. Mutat Res 62: 183–190, 1979.

    Article  PubMed  CAS  Google Scholar 

  103. Jaspers NGJ, Painter RB, Paterson MC, Kidson C, Inoue T. In: Ataxia-Telangiectasia, Gatti RA, Swift M, (eds), New York, Liss, 1985, pp 147–162.

    Google Scholar 

  104. Lehman AR: Three complementation groups in cockayne’s syndrome. Mutat Res 106: 347–356, 1982.

    Article  Google Scholar 

  105. Hansen MF, Koufos A, Gallie BL, Phillips RA, Fodstad O, Brogger A, Gedde-Dahl T, Cavanee WK: Osteosarcoma and retinoblastoma: A shared chromosomal mechanism revealing recessive predisposition. Proc Natl Acad Sci USA 82: 6216–6220, 1985.

    Article  PubMed  CAS  Google Scholar 

  106. Dryja TP, Rapaport JM, Epstein J, Goorin AM, Weichsebaum R, Koujos A, Cavanee WK: Chromosome 13 homozygosity in osteosarcoma without retinoblastoma. Am J Hum Genet 38: 59–66, 1986.

    PubMed  CAS  Google Scholar 

  107. Lynch HT, Albano WA, Danes S, Layton MA, Kimberling WJ, Lynch JF, Cheng SC, Costello KA, Mulcahy GM, Wagner CA, Tindall SL: Genetic predisposition to breast cancer. Cancer 53: 612–622, 1984.

    Article  PubMed  CAS  Google Scholar 

  108. Go RCP, King MC, Bailey-Wilson J, Elston RC, Lynch HT, Genetic epidemiology of breast cancer and associated cancers in high risk families. I. Segregation analysis. J Natl Cancer Inst 71: 455–461, 1983.

    PubMed  CAS  Google Scholar 

  109. King MC, Go RCP, Lynch HT, Elston RC, Terasaki PI, Petrakis NL, Rodgers GC, Lattanzio D, Bailey-Wilson J: Genetic epidemiology of breast cancer and associated cancers in high risk families. II. Linkage analysis. J Natl Cancer Inst 71: 463–467, 1983.

    PubMed  CAS  Google Scholar 

  110. Hartley AL, Birch JM, Marsden HB, Harris M: Breast cancer risk in mothers of children with osteosarcoma and chondrosarcoma. Br J Cancer 54: 819–823, 1986.

    Article  PubMed  CAS  Google Scholar 

  111. Barletta C, Pelicci PG, Kenyon LC, Smith SD, Dalla-Favera R: Relationship between the c-myb locus and the 6q- chromosomal aberration in leukemias and lymphomas. Science 235: 1064–1067, 1987.

    Article  PubMed  CAS  Google Scholar 

  112. Bargmann CI, Hung MC, Weinberg RA: Multiple independent activations of the neu oncogene by a point mutation altering the transmembrane domain of p185. Cell 45: 649–657, 1986.

    Article  PubMed  CAS  Google Scholar 

  113. Jansson M, Philipson L, Venstrom B: Isolation and characterization of multiple human genes homologous to the oncogenes of avian erythroblastosis virus. EMBO J 2: 561–565, 1983.

    PubMed  CAS  Google Scholar 

  114. Weinberger C, Thompson CC, Ong ES, Lebo R, Gruot DJ, Evans RM: The c-erb A gene encodes a thyroid hormone receptor. Nature 324: 641–646, 1986.

    Article  PubMed  CAS  Google Scholar 

  115. Sap J, Munoz A, Damm K, Goldberg Y, Ghysdad J, Leutz A, Berg H, Venstrom B: The c-erb A protein is a high-affinity receptor for thyroid hormone. Nature 324: 635–640, 1986.

    Article  PubMed  CAS  Google Scholar 

  116. McDonnell DP, Mangelsdorf DJ, Pike JW, Haussler MR, CTMalley BW: Molecular cloning of complementary DNA encoding the avian receptor for vitamin D. Science 235: 1214–1217, 1987.

    Article  PubMed  CAS  Google Scholar 

  117. Yamamoto KR: Steroid receptor regulated transcription of specific genes and gene networks. Annu Rev Genet 19: 209–252, 1985.

    Article  PubMed  CAS  Google Scholar 

  118. Vonderhaar BK: Effect of thyroid hormones on mammary tumor induction and growth. In: Hormonal Regulation of Mammary Tumors Leung BS, (ed), Montreal, Canada, Eden Press, pp 138–154, 1982.

    Google Scholar 

  119. Dubeau L, Chandler LA, Gralow JR, Nichols PW, Jones PA: Southern blot analysis of DNA extracted from formalin-fixed pathology specimens. Cancer Res 46: 2964–2969, 1986.

    PubMed  CAS  Google Scholar 

  120. Carle GF, Frank M, Olson MV: Electrophoretic separations of large DNA molecules by periodic inversion of the electric field. Science 232: 65–68, 1986.

    Article  PubMed  CAS  Google Scholar 

  121. Smith CL, Lawrence SK, Gillespie GA, Cantor CR, Weissman SM, Collins FS: Strategies for mapping and cloning macro-regions of mammalian genomes. Methods Enzymol: 151:461–489, 1987.

    Article  PubMed  CAS  Google Scholar 

  122. Chu G, Vollrath D, Davis RW: Separation of large DNA molecules by contour-clamped homogeneous electric fields. Science 234: 1582–1585, 1986.

    Article  PubMed  CAS  Google Scholar 

  123. Collins FS, Wesisman SM: Directional cloning of DNA fragments at a large distance from an initial probe: A circularization method. Proc Natl Acad Sci USA 81: 6812–6816, 1984.

    Article  PubMed  CAS  Google Scholar 

  124. Poustka A, Lehrach H: Jumping libraries and linking libraries: The next generation of molecular tools in mammalian genetics. Trends Genet 2: 174–179, 1986.

    Article  CAS  Google Scholar 

  125. Collins FS, Drumm ML, Cole JL, Lockwood WK, Van de Woude GF, Iannuzzi MC: Construction of a general human chromosome jumping library, with application to cystic fibrosis. Science 235: 1046–1049, 1987.

    Article  PubMed  CAS  Google Scholar 

  126. Orkin S: Reverse genetics and human disease. Cell 47: 845–850, 1987.

    Article  Google Scholar 

  127. Friend SH, Bernards R, Rogelj S, Weinberg RA, Rapaport JM, Albert DM, Dryja TP: A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323: 643–646, 1986.

    Article  PubMed  CAS  Google Scholar 

  128. Lee W-H, Bookstein R, Hong F, Young L-H, Shew J-Y, Lee EY-UP: Human retinoblastoma susceptibility gene: Cloning, identification and sequence. Science 235: 1394–1399, 1987.

    Article  PubMed  CAS  Google Scholar 

  129. Grzeschik A, Kazazian HH: Report of the committee on the genetic constitution of chromosome 10, 11, and 12. Cytogenet Cell Genet 40: 179–205, 1985.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers, Boston/Dordrecht/London

About this chapter

Cite this chapter

Ali, I.U., Lidereau, R., Callahan, R. (1988). Heterogeneity of genetic alterations in primary human breast tumors. In: Lippman, M.E., Dickson, R.B. (eds) Breast Cancer: Cellular and Molecular Biology. Cancer Treatment and Research, vol 40. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1733-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1733-3_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8975-3

  • Online ISBN: 978-1-4613-1733-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics