Skip to main content

The activation of cellular oncogenes by proviral insertion in murine mammary cancer

  • Chapter
Breast Cancer: Cellular and Molecular Biology

Part of the book series: Cancer Treatment and Research ((CTAR,volume 40))

Abstract

In this chapter, I shall review our current knowledge of the mechanism of mammary oncogenesis by the Mouse Mammary Tumor Virus (MMTV), with particular emphasis on the activation of cellular oncogenes by insertion of MMTV proviral DNA. The properties of these newly discovered cellular oncogenes will be described in some detail, and finally, I shall speculate a little on the mechanism of action of these genes. As an introduction, some of the relevant earlier discoveries on MMTV will be summarized to provide a framework of the biology of viral mammary tumorigenesis. More encyclopedic overviews of the biology and molecular biology of MMTV are found in references 1, 2 and 3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weiss R, Teich N, Varmus HE, Coffin J: The molecular biology of tumor viruses; RNA tumor viruses. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1982.

    Google Scholar 

  2. Hilgers J, Bentvelzen P: Interaction between viral and genetic factors in murine mammary cancer. Adv Cancer Res 26:143–195, 1979.

    Google Scholar 

  3. Michalides R, Van Ooyen A, Nusse R: Mouse mammary tumor virus expression and mammary tumor development. Curr Top Microbiol Immunol 106:57–78, 1983.

    PubMed  CAS  Google Scholar 

  4. Hageman PC, Calafat J, Hilgers J: The biology of the mouse mammary tumor virus. In: Mammary tumors in the mouse, pp 391–463. Hilgers J and Sluyser M, (eds), Elsevier/ North-Holland, Amsterdam, 1981.

    Google Scholar 

  5. Majors JE, Varmus HE: Nucleotide sequences at host-proviral junctions for mouse mammary tumor virus. Nature 289:253–258, 1981.

    PubMed  CAS  Google Scholar 

  6. Majors J, Varmus HE: Nucleotide sequencing of an apparent proviral copy of env mRNA defines determinants of expression of the mouse mammary tumor virus env gene. J Virol 47:495–504, 1983.

    PubMed  CAS  Google Scholar 

  7. Groner B, Buetti E, Diggelmann H, Hynes NE: Characterization of endogenous and exogenous mouse mammary tumor virus proviral DNA with site-specific molecular clones. J Virol 36:734–745, 1980.

    PubMed  CAS  Google Scholar 

  8. Ucker DS, Ross SR, Yamamoto KR: Mammary tumor virus DNA contains sequences required for its hormone-regulated transcription. Cell 27:257–266, 1981.

    PubMed  CAS  Google Scholar 

  9. Fasel N, Buetti E, Firzlaff J, Pearson K, Diggelmann H: Nucleotide sequence of the 5′ noncoding region and part of the gag gene of mouse mammary tumor virus; identification of the 5′ splicing site for subgenomic mRNAs. Nucleic Acids Res 11:6943–6955, 1983.

    PubMed  CAS  Google Scholar 

  10. Moore R, Dixon M, Smith R, Peters G, Dickson C: Complete nucleotide sequence of a milk-transmitted mouse mammary tumor virus: two frameshift suppression events are required for translation of gag and pol. J Virol 61:480–490, 1987.

    PubMed  CAS  Google Scholar 

  11. Brookes S, Placzek M, Moore R, Dixon C, Peters G: Insertion elements and transitions in cloned mouse mammary tumour virus DNA: Further delineation of the poison sequences. Nucleic Acids Res. 14:8231–8245.

    Google Scholar 

  12. Buetti E, Diggelmann H: Cloned mouse mammary tumor virus DNA is biologically active in transfected mouse cells and its expression is stimulated by glucocorticoid hormones. Cell 23:335–345, 1981.

    PubMed  CAS  Google Scholar 

  13. Diggelmann H, Vessaz AL, Buetti E: Cloned endogenous mouse mammary tumor virus DNA is biologically active in transfected mouse cells and its expression is stimulated by glucocorticoid hormones. Virology 122:332–341, 1982.

    PubMed  CAS  Google Scholar 

  14. Salmons B, Groner B, Calberg-Bacq CM, Ponta H: Production of Mouse Mammary Tumor Virus upon transfection of a recombinant proviral DNA into cultured cells. Virology 144:101–114, 1985.

    PubMed  CAS  Google Scholar 

  15. Dickson C, Peters G: Protein-coding potential of mouse mammary tumor virus genome RNA as examined by in vitro translation. J Virol 37:36–47, 1981.

    PubMed  CAS  Google Scholar 

  16. Fasel N, Pearson K, Buetti E, Diggelmann H: The region of mouse mammary tumor virus DNA containing the long terminal repeat includes a long open reading frame and signals for hormonally regulated transcription. EMBO J 1:3–7, 1982.

    PubMed  CAS  Google Scholar 

  17. Donehower LA, Huang AL, Hager GL: Regulatory and coding potential of the mouse mammary tumor virus long terminal redundancy. J Virol 37:226–238, 1981.

    PubMed  CAS  Google Scholar 

  18. Donehower LA, Andre J, Berard DS, Wolford RG, Hager GL: Construction and characterization of molecular clones containing integrated mouse mammary tumor virus sequences. In: Cold Spring Harbor Symp. Quant. Biol., pp 1153–1159. Cold Spring Harbor, New York, 1980.

    Google Scholar 

  19. Kennedy N, Knedlitschek G, Groner B, Hynes NE, Herrlich P, Michalides R, Van Ooyen AJJ: Long terminal repeats of endogenous mouse mammary tumor virus contain a long open reading frame which extends into adjacent sequences. Nature 295:622–624, 1982.

    PubMed  CAS  Google Scholar 

  20. Bentvelzen P, Daams JH, Hageman P, Calafat J: Genetic transmission of viruses that incite mammary tumors in mice. Proc Natl Acad Sci USA 67:377–384, 1970.

    PubMed  CAS  Google Scholar 

  21. Varmus HE, Bishop JM, Nowinski RC, Sarkar NH: Mammary tumor virus specific nucleotide sequences in DNA of high and low incidence mouse strains. Nature New Biol 238:189–190, 1972.

    PubMed  CAS  Google Scholar 

  22. Parks WP, Scolnick EM, Kozikowski EH: Dexamethasone Stimulation of murine mammary tumor virus expression: tissue culture source of virus. Science 183:158–60, 1974.

    Google Scholar 

  23. Young HA, Scolnick EM, Parks WP: Glucocorticoid-receptor interaction and induction of murine mammary tumor virus. J Biol Chem 250:3337–3343, 1975.

    PubMed  CAS  Google Scholar 

  24. Ringold GM, Yamamoto KR, Tomkins GM, Bishop JM, Varmus HE: Dexamethasone-mediated induction of mouse mammary tumor virus RNA: a system for studying glucocorticoid action. Cell 6:299–305, 1975.

    PubMed  CAS  Google Scholar 

  25. Buetti E, Diggelman H: Glucocorticoid regulation of mouse mammary tumor virus: Identification of a short essential DNA region. EMBO J 2:1423–1429, 1983.

    PubMed  CAS  Google Scholar 

  26. Chandler VL, Maler BA, Yamamoto KR: DNA sequences bound specifically by glucocorticoid receptor in vitro render a heterologous promoter hormone responsive in vivo. Cell 33:489–499, 1983.

    PubMed  CAS  Google Scholar 

  27. Hynes N, van Ooyen AJJ, Kennedy N, Herrlich P, Ponta H, Groner B: Subfragments of the large terminal repeat cause glucocorticoid-responsive expression of mouse mammary tumor virus and of an adjacent gene. Proc Natl Acad Sci USA 80:3637–3641, 1983.

    PubMed  CAS  Google Scholar 

  28. Majors J, Varmus HE: A small region of the mouse mammary tumor virus long terminal repeat confers glucocorticoid hormone regulation on a linked heterologous gene. Proc Natl Acad Sci USA 80:5866–5870, 1983.

    PubMed  CAS  Google Scholar 

  29. Payvar FP, Defranco D, Firestone GL, Edgar B, Wrange O, Ockert S, Gustafsson J-A, Yamamoto KR: Sequence-specific binding of glucocorticoid receptor to MTV DNA at sites within and upstream of the transcribed region. Cell 35:381–392, 1983.

    PubMed  CAS  Google Scholar 

  30. Ucker DS, Firestone GL, Yamamoto KR: Glucocorticoids and chromosomal position modulate murine mammary tumor virus transcription by affecting efficiency of promoter utilization. Mol Cell Biol 3:551–561, 1983.

    PubMed  CAS  Google Scholar 

  31. Godowski PJ, Rusconi S, Miesfeld R, Yamamoto KR: Glucocorticoid receptor mutants that are constitutive activators of transcriptional enhancement. Nature 325:365–368, 1987.

    PubMed  CAS  Google Scholar 

  32. Yamamoto KR: Steroid receptor regulated transcription of specific genes and gene networks. Annu Rev Genet 19:209–252, 1985.

    PubMed  CAS  Google Scholar 

  33. Garcia M, Wellinger R, Vessaz A, Diggelmann H: A new site of integration for mouse mammary tumor virus proviral DNA common to BALB/cf (C3H) mammary and kidney adenocarcinomas. EMBO J 5:127–134, 1986.

    PubMed  CAS  Google Scholar 

  34. Michalides R, Wagenaar E, Hilkens J, Hilgers J, Groner B, Hynes NE: Acquisition of proviral DNA of mouse mammary tumor virus in thymic leukemia cells from GR mice. J Virol 43:819–829, 1982.

    PubMed  CAS  Google Scholar 

  35. Hilgers J, Sluyser M: Mammary tumors in the mouse. Elsevier/North-Holland, Amsterdam, 1981.

    Google Scholar 

  36. Michalides R, Vlahakis G, Schlom J: A biochemical approach to the study of the transmission of mouse mammary tumor viruses in mouse strains RIII and C3H. Int J Cancer 18:105–115, 1976.

    PubMed  CAS  Google Scholar 

  37. Morris VL, Medeiros E, Ringold GM, Bishop JM, Varmus HE: Comparison of mouse mammary tumor virus-specific DNA in inbred, wild and Asian mice, and in tumors and normal organs from inbred mice. J Mol Biol 114:73–92, 1977.

    CAS  Google Scholar 

  38. Michalides R, van Nie R, Nusse R, Hynes NE, Groner B: Mammary Tumor induction loci in GR and DBAf mice contain one provirus of the Mouse Mammary Tumor Virus. Cell 23:165–173, 1981.

    PubMed  CAS  Google Scholar 

  39. Cohen JC, Varmus HE: Endogenous mammary tumor virus DNA varies among wild mice and segregates during inbreeding. Nature 278:418–423, 1979.

    PubMed  CAS  Google Scholar 

  40. Shank PR, Cohen JC, Varmus HE, Yamamoto KR, Ringold GM: Mapping of linear and circular forms of mouse mammary tumor virus DNA with restriction endonucleases: Evidence for a large specific deletion occurring at high frequency during circularization. Proc Natl Acad Sci USA 75:2112–2116, 1978.

    PubMed  CAS  Google Scholar 

  41. Cohen JC, Shank PR, Morris VL, Cardiff R, Varmus HE: Integration of the DNA of mouse mammary tumor virus in virus-infected normal and neoplastic tissues of the mouse. Cell 16:333–345, 1979.

    PubMed  CAS  Google Scholar 

  42. Cohen JC, Varmus HE: proviruses of mouse mammary tumor virus in normal and neoplastic tissues from GR and C3Hf mouse strains. J Virol 35:298–305, 1980.

    PubMed  CAS  Google Scholar 

  43. Groner B, Hynes N: Number and location of mouse mammary tumor virus proviral DNA in mouse DNA of normal tissue and of mammary tumors. J Virol 33:1013–1025, 1980.

    PubMed  CAS  Google Scholar 

  44. Michalides R, Wagenaar E, Groner B, Hynes NE: Mammary tumor virus proviral DNA in normal murine tissue and nonvirally induced mammary tumors. J Virol 39:367–376, 1981.

    PubMed  CAS  Google Scholar 

  45. Morris V, Gray DA, Jones RF, Chan ECMLee, McGrath CM: Mouse mammary tumor virus DNA sequences in tumorigenic and non-tumorigenic cells from a mammary adenocarcinoma. Virology 118:117–127, 1982.

    PubMed  CAS  Google Scholar 

  46. Altrock BW, Cardiff RD, Puma JP, Lund JK: Detection of acquired provirus sequences in mammary tumors from low-expressor, low-risk mice. J Natl Cancer Inst 68:1037–1041, 1982.

    PubMed  CAS  Google Scholar 

  47. Puma JP, Fanning TG, Young LJT, Cardiff RD: Identification of a unique mouse mammary tumor virus in the BALB/cNIV mouse strain. J Virol 43:158–165, 1982.

    PubMed  CAS  Google Scholar 

  48. Steffen D, Weinberg RA: The integrated genome of murine leukemia virus. Cell 15: 1003–1010, 1978.

    PubMed  CAS  Google Scholar 

  49. Payne GS, Courtneidge SA, Crittenden LB, Fadly AM, Bishop JM, Varmus HE: Analysis of avian leukosis virus DNA and RNA in bursal tumors: Viral gene expression is not required for maintenance of the tumor state. Cell 23:311–322, 1981.

    PubMed  CAS  Google Scholar 

  50. Neel BG, Hayward WS, Robinson HL, Fang J, Astrin SM: Avian leukosis virus-induced tumors have common proviral integration sites and synthesize discrete viral RNAs: Oncogenesis by promoter insertion. Cell 23:323–334, 1981.

    PubMed  CAS  Google Scholar 

  51. Varmus HE: The Molecular Genetics of Cellular Oncogenes. Ann Rev Genet 18:553–612, 1984.

    PubMed  CAS  Google Scholar 

  52. Hayward WG, Neel BE, Astrin SM: Activation of a cellular oncogene by promoter insertion in ALV induced lymphoid leukosis. Nature 290:475–480, 1981.

    PubMed  CAS  Google Scholar 

  53. Fung YKT, Lewis WG, Crittenden LB, Kung HJ: Activation of the cellular oncogene c-erbB by LTR insertion: Molecular basis for induction of erythroblastosis by Avian Leukosis Virus. Cell 33:357–368, 1983.

    PubMed  CAS  Google Scholar 

  54. Bingham PM, Levis R, Rubin GM: Cloning of DNA sequences from the white locus of D. melanogaster by a novel and general method. Cell 25:693–704, 1981.

    PubMed  CAS  Google Scholar 

  55. Nusse R: The activation of cellular oncogenes by retroviral insertion. Trends Genet 2:244–247, 1986.

    CAS  Google Scholar 

  56. Nusse R, Varmus HE: Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31:99–109, 1982.

    PubMed  CAS  Google Scholar 

  57. Nusse R, van Ooyen A, Cox D, Fung YKT, Varmus HE: Mode of proviral activation of a putative mammary oncogene (int-1) on mouse chromosome 15. Nature 307:131–136, 1984.

    PubMed  CAS  Google Scholar 

  58. Payne GS, Bishop JM, Varmus HE: Multiple arrangements of viral DNA and an activated host oncogene in bursal lymphomas. Nature 295:209–213, 1982.

    PubMed  CAS  Google Scholar 

  59. van Ooyen A, Nusse R: Structure and nucleotide sequence of the putative mammary oncogene int-1: Proviral insertions leave the protein-encoding domain intact. Cell 39: 233–240.

    Google Scholar 

  60. Fung YKT, Shackleford GM, Brown AMC, Sanders GS, Varmus HE: Nucleotide sequence and expression in vitro of cDNA derived from mRNA of int-1, a provirally activated mouse mammary oncogene. Mol Cell Biol 5:3337–3344, 1985.

    PubMed  CAS  Google Scholar 

  61. Rijsewijk FAM, Van Lohuizen M, van Ooyen A, Nusse R: Construction of a retroviral cDNA version of the int-1 mammary oncogene and its expression in vitro. Nucl Acids Res 14:693–702, 1986.

    PubMed  CAS  Google Scholar 

  62. Kozak M: Compilation and analysis of sequence upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res 12:857–872, 1984.

    PubMed  CAS  Google Scholar 

  63. Vaidya AB, Lasfargues EY, Sheffield JB, Coutinho WG: Murine mammary tumor virus (MuMTV) infection of an epithelial cell line established from C57BL/6 mouse mammary glands. Virology 90: 12–22, 1978.

    PubMed  CAS  Google Scholar 

  64. Brown AMC, Wildin RG, Prendergast TJ, Varmus HE: A retrovirus vector expressing the putative mammary oncogene int-1 causes partial transformation of a mammary epithelial cell line. Cell 46:1001–1009.

    Google Scholar 

  65. Rijsewijk F, Van Deemter L, Wagenaar E, Sonnenberg A, Nusse R: Transfection of the int-1 mammary oncogene in cuboidal RAC mammary cell line results in morphological transformation and tumorigenicity. EMBO J 6:127–131, 1987.

    PubMed  CAS  Google Scholar 

  66. Sonnenberg A, Van Balan P, Hilgers J, Schuuring E, Nusse R: Oncogene expression during progression of mouse mammary tumor cells; activity of a proviral enhancer and the resulting expression of int-2 is influenced by the state of differerentiation. EMBO J. 6: 121–125, 1987.

    PubMed  CAS  Google Scholar 

  67. Sonnenberg A, Daams J, van der Valk MA, Hilkens J, Hilgers J: Development of the mouse mammary gland: Identification of stages in the differentiation of luminal and myoepithelial cells using monoclonal antibodies and polyvalent antiserum against keratin. J Histochem Cytochem 34:1037–1046, 1986.

    PubMed  CAS  Google Scholar 

  68. Sonnenberg A, Daams H, Calafat J, Hilgers J: In vitro differentiation and progression of mouse mammary tumor cells. Cancer Res 46:5913–5922, 1986.

    PubMed  CAS  Google Scholar 

  69. Jakobovits A, Shackleford GM, Varmus HE, Martin GR: Two proto-oncogenes implicated in mammary carcinogenesis, int-1 and int-2, are independently regulated during mouse development. Proc Natl Acad Sci USA 83:7806–7810, 1986.

    PubMed  CAS  Google Scholar 

  70. Shackleford GM, Varmus HE: Expression of the proto-oncogene, int-1, is restricted to postmeiotic male germ cells and the neural tube of midgestational embryos. Cell: 50:85–95, 1987.

    Google Scholar 

  71. Wilkinson DG, Bailes JA, McMahon AP: Expression of the proto-oncogene int-1 is restricted to specific neural cells in the developing mouse embryo. Cell: 50:79–88, 1987.

    PubMed  CAS  Google Scholar 

  72. Rijsewijk F, Schuermann M, Wagenaar E, Parren P, Weigel D, Nusse R: The Drosophila homologue of the mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell: 50:649–657, 1987.

    PubMed  CAS  Google Scholar 

  73. Van Ooyen A, Kwee V, Nusse R: The nucleotide sequence of the human int-1 mammary oncogene; evolutionary conservation of coding and noncoding sequences. EMBO J 4: 2905–2909, 1985.

    PubMed  Google Scholar 

  74. Van ’t Veer LJ, Geurts van Kessel A, Van Heerikhuizen H, Van Ooyen A, Nusse R: Molecular cloning and chromosomal assignment of the human homolog of int-1, a mouse gene implicated in mammary tumorigenesis. Mol Cell Biol 4:2532–2534, 1984.

    Google Scholar 

  75. Peters G, Brookes S, Smith R, Dickson C: Tumorigenesis by Mouse Mammary Tumor Virus: Evidence for a common region for provirus integration in Mammary Tumors. Cell 33:369–377, 1983.

    PubMed  CAS  Google Scholar 

  76. Dickson C, Smith R, Brookes S, Peters G: Tumorigenesis by mouse mammary tumor virus: Proviral activation of a cellular gene in the common integration region int-2. Cell 37:529–536, 1984.

    PubMed  CAS  Google Scholar 

  77. Schuermann M, Michalides R: A rare common integration site of proviruses of the mouse mammary tumor virus in P-type mammary tumors of mouse strain GR. Virology 156: 229–238.

    Google Scholar 

  78. Peters G, Kozak C, Dickson C: Mouse mammary tumor virus integration regions int-1 and int-2 map on different mouse chromosomes. Mol Cell Biol 4:375–378.

    Google Scholar 

  79. Moore R, Casey G, Brookes S, Dixon M, Peters G, Dickson C: Sequence, topography and protein coding potential of mouse int-2: A putative oncogene activated by mouse mammary tumor virus. EMBO J 5:919–924, 1986.

    PubMed  CAS  Google Scholar 

  80. Dickson C, Peters G: Potential oncogene product related to growth factors. Nature 326:833, 1987.

    PubMed  CAS  Google Scholar 

  81. Peters G, Lee A, Dickson C: Activation of Cellular gene by mouse mammary tumor virus may occur early in tumor development. Nature 309:273–275, 1984.

    PubMed  CAS  Google Scholar 

  82. Casey G, Smith R, McGillivray D, Peters G, Dickson C: Characterization and chromosome assignment of the human homolog of int-2, a potential proto-oncogene. Mol Cell Biol 6:502–510, 1986.

    PubMed  CAS  Google Scholar 

  83. Gallahan D, Callahan R: Mammary tumorigenesis in feral mice: identification of a new int locus in mouse mammary tumor virus (Czech II)-induced mammary tumors. J Virol 61: 66–74.

    Google Scholar 

  84. Gallahan D, Kozak C, Callahan R: A new common integration region (int-3) for mouse mammary tumor virus on mouse chromosome 17. J Virol 61:218–220, 1987.

    PubMed  CAS  Google Scholar 

  85. Dekaban GA, Ball JK: Integration of type B retroviral DNA in virus-induced primary murine thymic lymphomas. J Virol 52:784–792, 1984.

    PubMed  CAS  Google Scholar 

  86. Dudley J, Risser R: Amplification and novel locations of endogenous mouse mammary tumor virus genomes in mouse T-cell lymphomas. J Virol 49:92–101, 1984.

    PubMed  CAS  Google Scholar 

  87. Michalides R, Wagenaar E, Weijers P: Rearrangement in the LTR of extra MMTV pro-viruses in T cell leukemias of GR result in a novel enhancer-like structure. Mol Cell Biol 5:823–830, 1985.

    PubMed  CAS  Google Scholar 

  88. Kwon BS, Weissman SM: Mouse mammary tumor virus related sequences in mouse lymphocytes are induced by 12-o-tetradecanoyl phorbol-13-acetate. J Virol 52:1000–1004, 1984.

    PubMed  CAS  Google Scholar 

  89. Wellinger RJ, Carcia M, Vessaz A, Diggelmann H: Exogenous mouse mammary tumor virus proviral DNA isolated from a kidney adenocarcinoma cell line contains alterations in the U3 region of the long terminal repeat. J Virol 60:1–11, 1986.

    PubMed  CAS  Google Scholar 

  90. Dudley JP, Arfsten A, Hsu C-LL, Kozak C, Risser R: Molecular cloning and characterization of mouse mammary tumor proviruses from a T-cell lymphoma. J Virol 57:385–388, 1986.

    PubMed  CAS  Google Scholar 

  91. Lenz J, Celander D, Crowther RL, Patarca R, Perkins D W, Haseltine WA: Determination of the leukaemogenicity of a murine retrovirus by sequences within the long terminal repeat. Nature 308:467–469, 1984.

    PubMed  CAS  Google Scholar 

  92. DesGroseillers L, Rassart E, Jolicoeur P: Thymotropism of murine leukemia virus is conferred by its long terminal repeat. Proc Natl Acad Sci USA 80:4203–4207, 1983.

    PubMed  CAS  Google Scholar 

  93. Etkind PR, Sarkar NH: Integration of new endogenous Mouse Mammary Tumor Virus proviral DNA at common sites in the DNA of Mammary tumors of C3Hf mice and hypomethylation of the endogenous mouse mammary tumor virus proviral DNA in C3Hf mammary tumors and spleens. J Virol 45: 114–123, 1983.

    PubMed  CAS  Google Scholar 

  94. Gray DA, McGrath CM, Jones RF, Morris VL: A common mouse mammary tumor virus integration site in chemically induced precancerous mammary hyperplasias. Virology 148: 360–368, 1986.

    PubMed  CAS  Google Scholar 

  95. Escot C, Hogg E, Callahan R: Mammary tumorigenesis in feral Mus cervicolor popaeus. J Virol 58:619–625, 1986.

    PubMed  CAS  Google Scholar 

  96. Morris DW, Cardiff RD: Multistep model of mouse mammary tumor development. In: Advances in Viral Oncology, pp 123–140. Klein G, (ed), Raven Press, New York.

    Google Scholar 

  97. Carcia JV, Bich-Thuy L, Stafford J, Queen C: Synergism between immunoglobulin enhancers and promoters. Nature 322:383–385, 1986.

    Google Scholar 

  98. Peters G, Lee AE, Dickson C: Concerted activation of two potential proto-oncogenes in carcinomas induced by mouse mammary tumor virus. Nature 320:628–631, 1986.

    PubMed  CAS  Google Scholar 

  99. Mester J, Wagenaar E, Sluyser M, Nusse R: Activation of the int-1 and int-2 mammary oncogenes in hormone-dependent and -independent mammary tumors of GR mice. J Virol 61:, (in press).

    Google Scholar 

  100. Gray DA, Jackson DP, Percy DH, Morris VL: Activation of int-1 and int-2 loci in GRf mammary tumors. Virology 154:271–278, 1986.

    PubMed  CAS  Google Scholar 

  101. Macinnes JI, Chan ECML, Percy DH, Morris VL: Mammary tumors from GR mice contain more than one population of mouse mammary tumor virus infected cells. Virology 113:119–129, 1981.

    PubMed  CAS  Google Scholar 

  102. Weber F, Schaffner W: Enhancer activity correlates with theoncogenic potential of avian retroviruses. EMBO J 4:949–956, 1985.

    PubMed  CAS  Google Scholar 

  103. Luciw PA, Bishop JM, Varmus HE, Capecchi MR: Location and function of retroviral and SV40 sequences that enhance biochemical transformation after microinjection of DNA. Cell 33:705–716, 1983.

    PubMed  CAS  Google Scholar 

  104. Wasylyk B, Wasylyk C, Augereau P, Chambon P: The SV40 72 bp repeat preferentially potentiates transcription starting from proximal natural or substitute promoter elements. Cell 32:503–514, 1983.

    PubMed  CAS  Google Scholar 

  105. Cato ACB, Miksicek R, Schuetz G, Arnemann J, Beato M: The hormone regulatory element of Mouse Mammary Tumor Virus mediates progesterone induction. EMBO J 5:2237–2240, 1986.

    PubMed  CAS  Google Scholar 

  106. Barbacid M: Mutagens, oncogens and cancer. Trends Genet 2:188–192, 1986.

    Google Scholar 

  107. Sukumar S, Notario V, Martin-Zanca D, Barbacid M: Induction of mammary carcinomas in rats by nitroso-methylurea involves malignant ativation of H-ras-1 locus by single point mutations. Nature 306:658–661, 1983.

    PubMed  CAS  Google Scholar 

  108. Zarbl H, Sukumar S, Arthur AV, Martin-Zanca D, Barbacid M: Direct mutagenesis of Ha-ras-1 oncogenes by N-nitroso-N-methylurea during initiation of mammary carcinogenesis in rats. Nature 315:382–385, 1985.

    PubMed  CAS  Google Scholar 

  109. Stewart TA, Pattengale PK, Leder P: Spontaneous mammary adenocarcinomas in trans-geneic mice that carry and express MTV/myc fusion genes. Cell 38:627–637, 1984.

    PubMed  CAS  Google Scholar 

  110. Leder A, Pattengale PK, Kuo A, Stewart T, Leder P: Consequences of widespread deregulation of the c-myc gene in transgenic mice: Multiple neoplasms and normal development. Cell 45:485–495, 1986.

    PubMed  CAS  Google Scholar 

  111. Miles BD, Robinson HL: High frequency of transduction of c-erbB in Avian Leukosis Virus induced erythroblastosis. J Virol 54:295–303, 1985.

    PubMed  CAS  Google Scholar 

  112. Nilsen TW, Maroney PA, Goodwin RG, Rottman P, Crittenden L, Raines M, Kung H-J. c-erbB activation in ALV-induced erythroblastosis: Novel RNA processing and promoter insertion result in expression of an aminotruncated EGF receptor. Cell 41–719–726, 1985.

    PubMed  CAS  Google Scholar 

  113. Van Nie R: Mammary tumorigenesis in the GR mouse strain. In: Mammary tumors in the mouse, pp. 201–266. Hilgers J and Sluyser M, (eds), Elsevier/North Holland, Amsterdam, 1981.

    Google Scholar 

  114. Slack JMW, Darlington BG, Health JK, Godsave SF: Mesoderm induction in early Xenopus embryos by heparinbinding growth factor. Nature 326:197–200, 1987.

    PubMed  CAS  Google Scholar 

  115. Dulbecco R Henahan M, Armstrong B: Cell types and morphogenesis in the mammary gland. Proc Natl Acad Sci USA 79:7346–7350, 1982.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers, Boston/Dordrecht/London

About this chapter

Cite this chapter

Nusse, R. (1988). The activation of cellular oncogenes by proviral insertion in murine mammary cancer. In: Lippman, M.E., Dickson, R.B. (eds) Breast Cancer: Cellular and Molecular Biology. Cancer Treatment and Research, vol 40. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1733-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1733-3_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8975-3

  • Online ISBN: 978-1-4613-1733-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics