Physiological Genetics of Organogenesis in vitro

  • M. L. Christianson
  • D. A. Warnick
Part of the Basic Life Sciences book series (BLSC, volume 44)


The recovery of plants from cell culture proceeds by one of two pathways: somatic embryogenesis or shoot organogenesis. The now classic experiments of Skoog and Miller demonstrated that organogenesis was controlled by the phytohormones in the medium. Shoot-inducing medium is relatively low in auxin and high in cytokinin, root-inducing medium is high in auxin and low in cytokinin, and callus-inducing medium has intermediate levels of auxin and cytokinin. A series of experimental manipulations demonstrates that the process of shoot organogenesis can be divided into three physiological phases: the acquisition of competence for induction (phase 1), induction per se (phase 2), and morphological differentiation and growth (phase 3). These phases can be further subdivided. For example, induction includes five transient sensitivities to inhibitors. Such stage-specific inhibitions reflect phenocritical times in development rather than general metabolic toxicities. The phenocopying agents are TIBA, sorbitol, ribose, ammonium ion, and ASA. A number of species or cultivars will not produce shoots in response to any of a large number of phytohormone combinations; in some cases, this can be shown to be the result of a block in the acquisition of competence (phase 1) rather than a block in the induction of shoots. Close attention to the physiological genetics of the regeneration process can lead to more efficient regeneration from responsive cultivars and regeneration from otherwise nonresponsive cultivars.


Somatic Embryogenesis Methyl Orange Gibberellic Acid Shoot Regeneration Leaf Explants 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Altschuler, M., and J.P. Mascarenhas (1982) Heat shock proteins and the effects of heat shock in plants. Plant Mol. Biol. 1:103–115.CrossRefGoogle Scholar
  2. 2.
    Barron, E.S.G., and G.A. Harrop, Jr. (1928) Studies on blood metabolism. II. The effect of methylene blue and other dyes upon the glycolysis and lactic acid formation of mammalian and avian erythrocytes. J. Biol. Chem. 79:65–87.Google Scholar
  3. 3.
    Beaty, R.M. (1987) M.S. Thesis, Department of Botany, University of Tennessee, Knoxville, Tennessee.Google Scholar
  4. 4.
    Breton, A.M., and Z.R. Sung (1982) Temperature-sensitive carrot variants impaired in somatic embryogenesis. Dev. Biol. 90:58–66.PubMedCrossRefGoogle Scholar
  5. 5.
    Brown, D.C.W., D.W.M. Leung, and T.A. Thorpe (1979) Osmotic requirement for shoot formation in tobacco callus. Physiol. Plant. 46:36–41.CrossRefGoogle Scholar
  6. 6.
    Christianson, M.L. (1987) Causal events in morphogenesis. In Plant Tissue and Cell Culture, C.E. Green, D.A. Somers, W.P. Hackett, and D.D. Biesboer, eds. Alan R. Liss, Inc., New York, pp. 45–55.Google Scholar
  7. 7.
    Christianson, M.L., and D.A. Warnick (1983) Competence and determination in the process of in vitro shoot organogenesis. Dev. Biol. 95:288–293.PubMedCrossRefGoogle Scholar
  8. 8.
    Christianson, M.L., and D.A. Warnick (1984) Phenocritical times in the process of in vitro shoot regeneration. Dev. Biol. 101:382–390.PubMedCrossRefGoogle Scholar
  9. 9.
    Christianson, M.L., and D.A. Warnick (1985) Temporal requirement for phytohormone balance in the control of organogenesis in vitro. Dev. Biol. 112:494–497.CrossRefGoogle Scholar
  10. 10.
    Christianson, M.L., and D.A. Warnick (1987) Organogenesis in vitro as a developmental process. HortScience (in press).Google Scholar
  11. 11.
    Claire, A. (1982) Augmentation de l’activité gibberellique chez les tiges volubiles d’Ipomoea purpurea. Effects d’un traitement au chlorure de lithium. Physiol. Veg. 20:11–22.Google Scholar
  12. 12.
    Cleland, C.E., and Y. Ben-Tal (1982) Influence of giving salicylic acid for different time periods on flowering and growth in the long day plant Lemna gibba G3. Plant Physiol. 70:287–290.PubMedCrossRefGoogle Scholar
  13. 13.
    Cross, J.W., and W.R. Briggs (1979) Solubilized auxin-binding protein. Planta 146:263–270.CrossRefGoogle Scholar
  14. 14.
    Dhawan, R.S., and K.K. Nanda (1982) Stimulation of root formation o n Impatiens balsamina L. cuttings by coumarin and the associated biochemical changes. Biol. Plant. 24:177–182.CrossRefGoogle Scholar
  15. 15.
    Earle, E.D., and J.G. Torrey (1965) Morphogenesis in cell colonies grown from Convolvulus cell suspensions plated on synthetic media. Am. J. Bot. 52:891–899.PubMedCrossRefGoogle Scholar
  16. 16.
    Ellis, D. (1986) Ph.D. Dissertation, Department of Botany, University ofMontana, Missoula, Montana.Google Scholar
  17. 17.
    Feldmann, K.A., and M.D. Marks (1986) Rapid and efficient regeneration of plants from explants of Arabidopsis thaliana. Plant Sci. 47:63–69.CrossRefGoogle Scholar
  18. 18.
    Gabara, B. (1982) Effect of morphactin (chlorflurenol IT 3456) on the mitotic activity and cell growth in roots of Pisum sativa L. Acta Soc. Bot. Pol. 51:39–50.Google Scholar
  19. 19.
    Gloor, H. (1947) Phanokopie-Versuche mit Ather an Drosophila. Rev. Suisse Zool. 54:637–713.Google Scholar
  20. 20.
    Goldschmidt, R.B. (1935) Gen und Ausseneigenschaft. Z. Indukt. Abstamm. Vererbungsl. 69:38–69.CrossRefGoogle Scholar
  21. 21.
    Goldschmidt, R.B. (1957) Problematics of the phenomenon of phenocopy. J. Madras Univ. B 27:12–24.Google Scholar
  22. 22.
    Haccius, B., and D. Wilhelm (1966) Mutationen kopierende Bluten-Anomalien bei Pisum sativum nach Phenylborsaure-behandlung. Planta 69:288–291.CrossRefGoogle Scholar
  23. 23.
    Hadorn, E. (1961) Developmental Physiology and Lethal Factors, John Wiley and Sons, New York.Google Scholar
  24. 24.
    Han, P.F., G.Y. Han, H.C. McBay, and J. Johnson, Jr. (1978) Alteration of the regulatory properties of chicken liver fructose-1,6-bisphosphatase by treatment with aspirin. Biochem. Biophys. Res. Comm. 85:747–755.PubMedCrossRefGoogle Scholar
  25. 25.
    Huxter, T.J., T.A. Thorpe, and D.M. Reid (1981) Shoot initiation in light-and dark-green tobacco callus: The role of ethylene. Physiol. Plant. 53:319–326.CrossRefGoogle Scholar
  26. 26.
    Kumar, S., and K.K. Nanda (1981) Gibberellic acid-and salicylic acid-caused formation of new proteins associated with extension growth and flowering of Impatiens balsamina. Biol. Plant. 23:321–327.CrossRefGoogle Scholar
  27. 27.
    Lado, P., R. Cerana, A. Bonetti, M.T. Marre, and E. Marre (1981) Effects of calmodulin inhibitors in plants. I. Synergism with fusicoccin in the stimulation of growth and H+ secretion and in the hyperpolarization of the transmembrane potential. Plant Sci. Lett. 23:253–262.CrossRefGoogle Scholar
  28. 28.
    Landauer, W. (1957) Phenocopies and genotype, with special reference to sporadically-occurring developmental variants. Am. Naturalist 91:79–90.CrossRefGoogle Scholar
  29. 29.
    Landauer, W. (1958) On phenocopies, their developmental physiology and genetic meaning. Am. Naturalist 92:201–213.CrossRefGoogle Scholar
  30. 30.
    Mitsuhasi-Kato, M., and H. Shibaoka (1981) Effects of actinomycin-D and 2,4-dinitrophenol on the development of root primordia in azuki bean stem cuttings. Plant Cell Physiol. 22:1431–1436.Google Scholar
  31. 31.
    Moore, D. (1981) Effects of hexose analogues on fungi: Mechanisms of inhibition and of resistance. New Phytol. 87:487–515.CrossRefGoogle Scholar
  32. 32.
    Murashige, T. (1961) Suppression of shoot formation in cultured tobacco cells by gibberellic acid. Science 134:280.CrossRefGoogle Scholar
  33. 33.
    Murashige, T. (1964) Analysis of the inhibition of organ formation in tobacco tissue culture by gibberellin. Physiol. Plant. 17:636–643.CrossRefGoogle Scholar
  34. 34.
    Murashige, T. (1965) Effects of stem-elongation retardants and gibberellin on callus growth and organ formation in tobacco tissue culture. Physiol. Plant. 18:665–673.CrossRefGoogle Scholar
  35. 35.
    Plumb-Dhindsa, P.L., R.S. Dhindsa, and T.A. Thorpe (1979) Nonautotropic CO2 fixation during shoot formation in tobacco callus. J. Exp. Bot. 30:759–767.CrossRefGoogle Scholar
  36. 36.
    Ram, H.Y.M., and G. Mehta (1982) Regeneration of plantlets from cultured morphactin-induced barren capitula of African marigold (Tagetes erecta L.). Plant Sci. Lett. 26:227–232.CrossRefGoogle Scholar
  37. 37.
    Rucker, W. (1982) Morphactin-induced changes in the cytokinin effect on tissue and organ cultures of Nicotiana tabacum. Protoplasma 113:103–109.CrossRefGoogle Scholar
  38. 38.
    Saunders, M.J., and P.K. Hepler (1982) Calcium ionophore A23187 stimulates cytokinin-like mitosis in Funaria. Science 217:943–945.PubMedCrossRefGoogle Scholar
  39. 39.
    Skoog, F., and C.O. Miller (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp. Soc. Exp. Biol. 11:118–140.PubMedGoogle Scholar
  40. 40.
    Suzuki, D.T. (1970) Temperature-sensitive mutations in Drosophila melanogaster. Science 170:695–706.PubMedCrossRefGoogle Scholar
  41. 41.
    Thorpe, T.A. (1974) Carbohydrate availability and shoot formation in tobacco callus cultures. Physiol. Plant. 30:77–81.CrossRefGoogle Scholar
  42. 42.
    Thorpe, T.A., and D.D. Meier (1972) Starch metabolism, respiration, and shoot formation in tobacco callus cultures. Physiol. Plant. 27:365–369.CrossRefGoogle Scholar
  43. 43.
    Thorpe, T.A., and D.D. Meier (1973) Effects of gibberellic acid and abscisic acid on shoot formation in tobacco callus cultures. Physiol. Plant. 29:121–124.CrossRefGoogle Scholar
  44. 44.
    Waddington, C.H. (1956) Principles of Embryology, Allen and Unwin, London.CrossRefGoogle Scholar
  45. 45.
    Waddington, C.H. (1961) Genetic assimilation. Adv. Genet. 10:257–292.PubMedCrossRefGoogle Scholar
  46. 46.
    Walker, K.A., M.L. Wendeln, and E.G. Jaworski (1979) Organogenesis in callus tissue of Medicago sativa. The temporal separation of induction processes from differentiation processes. Plant Sci. Lett. 16:23–30.CrossRefGoogle Scholar
  47. 47.
    Warnick, D.A. (1985) Developmental biology of rhizogenesis in vitro in Convolvulus arvensis. M.A. Thesis, San Jose State University, San Jose, California.Google Scholar
  48. 48.
    Wu, F.S., Y.C. Park, D. Roufa, and A. Martonosi (1981) Selective stimulation of the synthesis of an 80,000 dalton protein by calcium ionophores. J. Biol. Chem. 256:5309–5312.PubMedGoogle Scholar
  49. 49.
    Yamamoto, R., N. Sakurai, and Y. Masuda (1981) Inhibition of auxininduced cell elongation by galactose. Physiol. Plant. 53:543–547.CrossRefGoogle Scholar
  50. 50.
    Yusufov, A.G. (1982) Origin and evolution of the phenomenon of regeneration in plant (problem of evolution ontogenesis). Usp. Sovrem. Biol. 93:89–104 (translated from Russian by Leo Kanner Associates).Google Scholar
  51. 51.
    Zatyko, J., F. Kiss, and I. Simon (1980) Indikatorok es mikrotechnikai festekek hatasa szovet-es szervtenyeszetekre. Bot. Kozlem. 67:97–101.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • M. L. Christianson
    • 1
  • D. A. Warnick
    • 1
  1. 1.Zoecon Research InstituteSandoz Crop Protection CorporationPalo AltoUSA

Personalised recommendations