Advertisement

Metabolic Phenotypes in Somatic Embryogenesis and Polyembryogenesis

  • Don J. Durzan
Part of the Basic Life Sciences book series (BLSC, volume 44)

Abstract

The recovery of somatic embryos from Prunus spp. and a variety of conifers using cell suspension cultures has created an opportunity to compare metabolic phenotypes among somatic and zygotic embryonic systems. Metabolic phenotypes are based on, but not limited to, the integration over time of families of metabolites involved in amino acid metabolism. Metabolic phenotypes are displayed as physiological state-networks by computer-assisted graphics. While the interpretation of such maps remains difficult, their potential value in revealing true-to-type phenotypes for clonal development and culture practices will be illustrated.

Keywords

Somatic Embryo Somatic Embryogenesis Cell Suspension Culture Zygotic Embryo Embryonal Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albersheim, P., and A.G. Darvill (1985) Oligosaccharins. Am. Scientist 253:58–64.Google Scholar
  2. 2.
    Allen, G.S., and J.N. Owens (1972) The Life History of Douglas-fir, Environment Canada, Forestry Service, Ottawa, 139 pp.Google Scholar
  3. 3.
    Bidwell, R.G.S., and D.J. Durzan (1975) Some recent aspects of nitrogen metabolism. In Historical and Current Aspects of Plant Physiology. A Symposium Honoring F.C. Steward, P. Davies, ed. New York State College of Agricultural Science, Cornell University, Ithaca, New York, pp. 162–227.Google Scholar
  4. 4.
    Boulay, M.H., P.K. Gupta, and D.J. Durzan (1988) Conversion of somatic embryos from cell suspension cultures of Norway spruce (Picea abies Karst.). Plant Cell Reports (submitted for publication).Google Scholar
  5. 5.
    Camefort, H. (1969) Fécondation et proembryogénèse chez les Abiétaceés (notion de neocytoplasme). Rev. Cytol. Biol. Veg. 32:253–271.Google Scholar
  6. 6.
    Conn, H.J. (1961) Biological Stains, 7th ed., Williams and Williams Company, Philadelphia.Google Scholar
  7. 7.
    Dogra, P.D. (1967) Seed sterility and disturbances in embryony in conifers with particular reference to seed testing and breeding in Pinaceae. Stud. For. Suecica No. 45, pp. 1–97.Google Scholar
  8. 8.
    Durzan, D.J. (1982) Nitrogen metabolism and vegetative propagation of forest trees. In Tissue Culture in Forestry, J.M. Bonga and D.J. Durzan, eds. Martinus Nijhoff/Dr. W. Junk Publishers, The Hague, pp. 256–324.Google Scholar
  9. 9.
    Durzan, D.J. (1987) Physiological states and metabolic phenotypes in embryonic development. In Cell and Tissue Culture in Forestry, Vol. 2, J.M. Bonga and D.J. Durzan, eds. Martinus Nijhoff/Dr. W. Junk Publishers, Dordrecht, The Netherlands, pp. 405–439.CrossRefGoogle Scholar
  10. 10.
    Durzan, D.J. (1987) Plant growth regulator-directed phase specificity in cell and tissue culture for tree improvement. In Proceedings of the Society American Foresters National Convention, Birmingham, Alabama, October 5–8, 1986, pp. 218–222.Google Scholar
  11. 11.
    Durzan, D.J. (1987) Plant growth regulators in cell and tissue culture of woody perennials. In Hormonal Control of Tree Growth, S.V. Kossuth and S. Ross, eds. Martinus Nijhoff Publishers, Dordrecht, The Netherlands (in press).Google Scholar
  12. 12.
    Durzan, D.J., and G. Bourgon (1976) Growth and metabolism of cells and tissue of jack pine. I. Observations on cytoplasmic streaming and effects of L-glutamine and its analogues on subcellular activities. Can. J. Bot. 54:507–517.CrossRefGoogle Scholar
  13. 13.
    Durzan, D.J., and P.K. Gupta (1987) Somatic embryogenesis and polyembryogenesis in conifers. Adv. Biotech. Proc. Vol. 9 (in press).Google Scholar
  14. 14.
    Durzan, D.J., and P.K. Gupta (1987) Somatic embryogenesis and polyembryogenesis in Douglas-fir cell suspension cultures. Plant Sci. (in press).Google Scholar
  15. 15.
    Durzan, D.J., and F.C. Steward (1970) Morphogenesis in cell cultures of gymnosperms: Some growth patterns. (International Union Forest Research Organizations, Section 22, Workshop, May 28-June 5, Helsinki, Finland, 20 pp. plus 8 plates. ) Abstr. Inst. For. Fenn. 74(6):16.Google Scholar
  16. 16.
    Durzan, D.J., and F.C. Steward (1983) Nitrogen metabolism. In Plant Physiology A Treatise, Vol. 8, F.C. Steward, ed. Academic Press, Inc., New York, pp. 55–265.Google Scholar
  17. 17.
    Durzan, D.J., and K. Uriu (1986) Metabolic networks in developing pistachio embryos (Pistachia vera cv. Kerman). In Progress in Developmental Biology, Part A, Harold C. Slavkin, ed. Alan R. Liss, Inc., New York, pp. 199–202.Google Scholar
  18. 18.
    Falk, R.H. (1972) Scanning electron microscope induced cathodeluminescence. Proceedings of the 30th Annual Meeting of the Electron Microscopy Society of America, Los Angeles, California, D.J. Arceneaux, ed.Google Scholar
  19. 19.
    Fromm, M., L.P. Taylor, and V. Walbot (1986) Stable transformation of maize after gene transfer by electroporation. Nature 319:791–793.PubMedCrossRefGoogle Scholar
  20. 20.
    Gupta, P.K., and D.J. Durzan (1986) Plantlet regeneration via somatic embryogenesis from subcultured callus of mature embryos of Picea abies (Norway spruce). In Vitro Cell. Develop. Biol. 11:685–688.CrossRefGoogle Scholar
  21. 21.
    Gupta, P.K., and D.J. Durzan (1986) Somatic polyembryogenesis from callus of mature sugar pine embryos. Bio/Technology 4:643–645.CrossRefGoogle Scholar
  22. 22.
    Gupta, P.K., and D.J. Durzan (1987) Biotechnology of somatic embryogenesis in loblolly pine. Bio/Technology 5:147–151.CrossRefGoogle Scholar
  23. 23.
    Gupta, P.K., and D.J. Durzan (1987) Somatic embryos from protoplasts of loblolly pine proembryonal cells. Bio/Technology 5:710–712.CrossRefGoogle Scholar
  24. 24.
    Halberg, J., E. Halberg, F. Halberg, and L.C. Olson (1973) Internal circadian acrophases for plant physiologists in comparative biochemistry or photoperiodism. Intl. J. Chronobiol. 1:81–90.Google Scholar
  25. 25.
    Kester, D.E. (1983) The clone in horticulture. Hort Science 18:831–837.Google Scholar
  26. 26.
    Krogstrup, P. (1984) Micropropagation of conifers. Ph.D. Thesis. Royal Veterinary and Agricultural University, Department of Horticulture, Copenhagen, July, 1984.Google Scholar
  27. 27.
    Mühlethaler, K. (1975) The ultrastructure of cells. In Historical and Current Aspects of Plant Physiology, P.J. Davies, ed. New York State College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, pp. 226–242.Google Scholar
  28. 28.
    Nagmani, R., and J.M. Bonga (1986) Embryogenesis in subcultured callus of Larix decidua. Can. J. For. Res. 15:1088–1091.CrossRefGoogle Scholar
  29. 29.
    Norstog, K. (1982) Experimental embryology of gymnosperms. In Experimental Embryology of Vascular Plants, B.M. Johri, ed. Springer-Verlag, Berlin, New York, pp. 25–48.CrossRefGoogle Scholar
  30. 30.
    Ong, B.Y., R.H, Falk, and D.E. Bayer (1973) Scanning electron microscope observations of herbicide dispersal using cathode luminescence as the detector mode. Plant Physiol. 51:415–420.PubMedCrossRefGoogle Scholar
  31. 31.
    Ow, D.W., K.V. Wood, M. DeLuca, J.R. DeWet, D.R. Helinski, and S.H. Howell (1986) Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science 34:856–859.CrossRefGoogle Scholar
  32. 32.
    Piatt, J.R. (1961) Properties of large molecules that go beyond the properties of their chemical sub-groups. J. Theor. Biol. 1:342–358.CrossRefGoogle Scholar
  33. 33.
    Powledge, T.M. (1984) Biotechnology touches the forest. Bio/Technology 2:763–772.CrossRefGoogle Scholar
  34. 34.
    Reiger, R., D. Michaels, and M. Green (1976) Glossary of Genetics and Cytogenetics, Springer-Verlag, New York.Google Scholar
  35. 35.
    Romberger, J.A., and C.A. Tabor (1975) The Picea abies shoot apical meristem in culture. II. Deposition of polysaccharides and lignin-like substances beneath cultures. Am. J. Bot. 62:660–671.CrossRefGoogle Scholar
  36. 36.
    Satoh, S., H. Kamada, H. Harada, and T. Fujii (1986) Auxin-controlled glycoprotein release into the medium of embryogenic carrot cells. Plant Physiol. 81:931–933.PubMedCrossRefGoogle Scholar
  37. 37.
    Singh, H. (1978) Embryology of gymnosperms. In Encyclopedia of Plant Physiology, W. Zimmermann, S. Carlquist, P. Ozenda, and H.D. Wulff, eds. Gebrüder, Borntraeger, Berlin, pp. 192–198.Google Scholar
  38. 38.
    Speigel-Roy, P., and A. Vardi (1984) Citrus. In Handbook of Plant Cell Culture. Vol. 3. Crop Species, P.V. Ammirato, D.A. Evans, W.R. Sharp, and Y. Yamada, eds. Macmillan Publishing Company, New York, pp. 355–372.Google Scholar
  39. 39.
    Steward, F.C., and D.J. Durzan (1965) Metabolism of nitrogenous compounds. In Plant Physiology, an Advanced Treatise, Vol. 4, Part A, F.C. Steward, ed. Academic Press, Inc., New York, pp. 379–686.Google Scholar
  40. 40.
    Theologis, A. (1986) Rapid gene regulation by auxin. Ann. Rev. Plant Physiol. 37:407–438.CrossRefGoogle Scholar
  41. 41.
    Timmis, R., M.M. Abo-El-Nil, and R.W. Stonecypher (1986) Potential gain through tissue culture. In Cell and Tissue Culture In Forestry. Vol. 1. General Principles and Biotechnology, J.M. Bonga and D.J. Durzan, eds. Martinus Nijhoff Publishers, Dordrecht, The Netherlands, pp. 198–215.Google Scholar
  42. 42.
    Veen, A.H., and A. Lindenmayer (1977) Diffusion mechanism for phyllotaxis. Theoretical physico-chemical and computer study. Plant Physiol. 60:127–139.PubMedCrossRefGoogle Scholar
  43. 43.
    Ventimiglia, F., and D.J. Durzan (1986) The determination of monosubstituted guanidines using a dedicated amino acid analyzer. Liquid Chromatography/Gas Chromatography 4:1121–1124.Google Scholar
  44. 44.
    Willemse, M.T.M. (1974) Megagametogenesis and formation of neocytoplasm in Pinus sylvestris L. In Fertilization in Higher Plants, H.F. Linskins, ed. North-Holland, Amsterdam, pp. 97–102.Google Scholar
  45. 45.
    Woodward, V.M., J.R. DeZeeuw, and A.M. Srb (1954) The separation and isolation of particular biochemical mutants of Neurospora by differential germination of conidia followed by filtration and selected plating. Proc. Natl. Acad. Sci., USA 40:192–200.PubMedCrossRefGoogle Scholar
  46. 46.
    Yablokov, A.V. (1986) Phenetics: Evolution, Population, Trait, Columbia University Press, New York, 171 pp.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Don J. Durzan
    • 1
  1. 1.Department of Environmental HorticultureUniversity of CaliforniaDavisUSA

Personalised recommendations