Skip to main content

Intrinsic Colloidal Attraction/Repulsion between Lipid Bilayers and Strong Attraction Induced by Non-adsorbing Polymers

  • Chapter
Molecular Mechanisms of Membrane Fusion

Abstract

Surfactant bilayers in aqueous media interact non-specifically via long range electrostatic, electrodynamic, and solvation forces.1–5 Even though the magnitude of each interaction can be very large, the free energy minimum at stable contact is usually small with a progressive increase in depth as bilayer separation decreases. Addition of large, non-adsorbing polymers (e.g. dextran or polyethylene oxide) can greatly augment the weak natural attraction between bilayers to force them into closer proximity (perhaps sufficiently close to facilitate fusion). With micromechanical experiments on giant bilayer vesicles, direct measurements are made of free energy potentials for assembly of two bilayers to adhesive contact in salt solutions and in concentrated polymer solutions.6–14 Results for neutral and charged lipid bilayers in salt buffer correlate well with classical prescriptions for van der Waals attraction and electric double-layer repulsion based on structural data derived from published X-ray diffraction studies. Adhesion in concentrated solutions of non-adsorbing polymers is promoted by interaction of depletion layers due to polymer exclusion from the bilayer surfaces. For equilibrium exchange of polymer between the gap and bulk regions, the added attraction is shown to be simply the osmotic pressure difference between the bulk polymer concentration and the depreciated value at the mid-point of bilayer separation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.J.W. Verwey and J.Th.G. Overbeek: Theory of the Stability of Lyophobic Colloids (Elsevier, Amsterdam, 1948).

    Google Scholar 

  2. V.A. Parsegian, N. Fuller and R.P. Rand: Proc. Natl. Acad. Sci. USA. 76, 2750 (1979).

    Article  PubMed  CAS  Google Scholar 

  3. V.A. Parsegian: Ann. Rev. BioPhys. Bioeng.. 2, 221 (1973).

    Article  CAS  Google Scholar 

  4. J.N. Israelachvili and R.M. Pashley: In Biophysics of Water, F. Franks Ed. (John Wiley and Sons, 1982) p. 183.

    Google Scholar 

  5. R.P. Rand: Ann. Rev. BioPhys. Bioeng.. 10, 277 (1981).

    Article  CAS  Google Scholar 

  6. E. Evans: Colloids and Surfaces 1984, 10, 133.

    Article  CAS  Google Scholar 

  7. E. Evans and M. Metcalfe: Biophys. J.. 45, 715 (1984).

    Article  PubMed  CAS  Google Scholar 

  8. R. Kwok and E. Evans: Biophys. J., 35, 637 (1981).

    Article  PubMed  CAS  Google Scholar 

  9. E. Evans and D. Needham: Faradav Discuss. Chem. Soc., No. 81 (1987).

    Google Scholar 

  10. E. Evans and D. Needham: J. Phys. Chem. (in press).

    Google Scholar 

  11. E. Evans: BioPhys. J. 1980, 31, 425.

    Article  PubMed  CAS  Google Scholar 

  12. E. Evans and V.A. Parsegian: In Surface Phenomena in Hemorheologv: Theoretical ExperimentalT and Clinical Aspects; Copley, A.L., Seaman, G.V.F., Eds. (N.Y. Acad. Sci., 1983) p. 13.

    Google Scholar 

  13. E. Evans and M. Metcalfe: BioPhys. J., 46, 423 (1984).

    Article  PubMed  CAS  Google Scholar 

  14. E. Evans and D. Needham: Macromolecules (submitted).

    Google Scholar 

  15. E.M. Lifshitz: J. Exp. Theor. Phys. USSR, 29, 94 (1955); Sov. Phys. JETP, 2, 73 (1956).

    Google Scholar 

  16. L.J. Lis, M. McAlister, N. Fuller and R.P. Rand: Biophys. J.. 37, 657 (1982).

    Google Scholar 

  17. W. Helfrich: Z. Naturforsch, 33a, 305 (1978).

    CAS  Google Scholar 

  18. E. Evans and V.A. Parsegian: Proc. Natl. Acad. Sci. USAT 83, 7132 (1986).

    Article  CAS  Google Scholar 

  19. E. Evans and R. Skalak: Mechanics and Thermodynamics of Biomembranes (CRC Press, Boca Raton, Fla., 1980).

    Google Scholar 

  20. V. Luzzati: In Biological Membranes, D. Chapman Ed. (Academic Press, New York, 1968) p. 71.

    Google Scholar 

  21. E. Evans, D. Needham and R.P. Rand: Colloids and Surfaces (to be submitted).

    Google Scholar 

  22. R.P. Rand and V.A. Parsegian: (to be submitted).

    Google Scholar 

  23. D. Le Neveu, R.P. Rand, D. Gingell and V.A. Parsegian: Biophys. J., 18, 209 (1977).

    Article  Google Scholar 

  24. B.W. Ninham and V.A. Parsegian: J. Chem. Phys.. 53, 3398 (1970).

    Article  CAS  Google Scholar 

  25. J. Marra: J. Colloid Interface Sci., 107, 446 (1985)

    Article  CAS  Google Scholar 

  26. M. Hauser, I. Pascher, R.M. Pearson and S. Sundell: Biochim et BioPhys. Acta, 650, 21 (1981).

    Google Scholar 

  27. T.J. Mcintosh and S.A. Simon: Biochem., 25, 4058 (1986).

    Article  CAS  Google Scholar 

  28. V.A. Parsegian: Private Communication; and V.A. Parsegian: Ann. Rev. Biophys. Bioeng. 1973, 2, 221.

    Article  CAS  Google Scholar 

  29. J. Marra and J. Israelachvili: Biochem., 24, 4608 (1985).

    Article  CAS  Google Scholar 

  30. Double-layer repulsion has been modelled by the full-nonlinear Poisson-Boltzmann equations and Guoy-Chapman theory.1 For these small charge contents, linearized equations are completely acceptable. Also, Na+ binding to the (PS + PC) bilayers is well-established and is characterized by an equilibrium constant of 0.6 M−1.31

    Google Scholar 

  31. M. Eisenberg, T. Gresalfi, T. Riccio and S. McLaughlin: Biochem., 18, 3213 (1979).

    Google Scholar 

  32. J.F. Joanny, L. Leibler and P-G. de Gennes: J. Polym. Sci. Polym. Phys. Ed. 1979, 17, 1073.

    Article  CAS  Google Scholar 

  33. G.J. Fleer, J.M.H.M. Scheutjens and B. Vincent: In Polymer Adsorption and Dispersion Stability, Goddard, E.D., Vincent, B., Eds. (Am. Chem. Soc, Washington, 1984) p. 245.

    Google Scholar 

  34. Th.F. Tadros: In Polymer Colloids, Buscall, R., Corner, T., Stageman, J.F., Eds. (Elsevier Applied Sci., London, 1985) p. 105.

    Google Scholar 

  35. B. Vincent: In Polymer Adsorption and Dispersion Stability, Goddard, E.D., Vincent, B., Eds. (Am. Chem. Soc, Washington, 1984) p. 1

    Google Scholar 

  36. D.H. Napper: Polymeric Stabilization of Colloidal Dispersions, Academic Press, London, 1983.

    Google Scholar 

  37. P-G. de Gennes: J. Phys. (Paris) 1976, 37, 1445.

    Article  Google Scholar 

  38. P-G. de Gennes: Macromolecules 1982, 15, 492.

    Article  Google Scholar 

  39. J.M.H.M. Scheutjens and G.J. Fleer: Macromolecules 1985, 18, 182.

    Article  Google Scholar 

  40. E. Mackor, and J. van der Waals: J. Colloid Sci. 1952, 7, 535.

    Google Scholar 

  41. S. Ash and G. Findenegg: Trans. Faradav Soc. 1971, 67, 2122.

    Google Scholar 

  42. S.F. Edwards: Proc. Phys. Soc. (London) 1965, 85, 613.

    Article  CAS  Google Scholar 

  43. A. Silberberg: J. Chem. Phys. 1967, 46, 1105; 1968, 48, 2835.

    Article  CAS  Google Scholar 

  44. R.J. Roe: J. Chem. Phys. 1974, 60, 4192.

    Google Scholar 

  45. P-G. de Gennes: Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, 1979).

    Google Scholar 

  46. J.M.H.M. Scheutjens and G.F. Fleer: Adv. Colloid Interface Sci. 1982, 16, 361; 1983, 18, 309.

    Article  CAS  Google Scholar 

  47. J.W. Cahn and J.E. Hilliard: J. Chem. Phys. 1958, 28, 258.

    Article  CAS  Google Scholar 

  48. G. Widom: Physica 1979, 95A, 1.

    CAS  Google Scholar 

  49. Note: all chemical potentials and free energies are assumed to be in units of thermal energy, i.e. normalized by kT.

    Google Scholar 

  50. P.J. Flory: Principles of Polymer Chemistry (Cornell University Press, Ithaca, 1953).

    Google Scholar 

  51. Note: The data required for these predictions are νs = 29.9 x 10-24 cm3; νm = 164 x 10-24 cm3; am=νm 1/3 = 5.47 x 10-8cm; Np = Mn/162; and the virial coefficients for each polymer fraction taken from Table 2

    Google Scholar 

  52. The number-average molecular weights for the larger fractions could not be accurately measured by osmotic pressure methods; hence the values given in Table 2 for the first virial coefficient are those measured by the producers.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Evans, E., Needham, D. (1988). Intrinsic Colloidal Attraction/Repulsion between Lipid Bilayers and Strong Attraction Induced by Non-adsorbing Polymers. In: Ohki, S., Doyle, D., Flanagan, T.D., Hui, S.W., Mayhew, E. (eds) Molecular Mechanisms of Membrane Fusion. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1659-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1659-6_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8921-0

  • Online ISBN: 978-1-4613-1659-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics