Skip to main content

Laser Restructurable Technology and Design

  • Chapter
Wafer Scale Integration

Abstract

The Restructurable VLSI project at MIT Lincoln Laboratory has developed a design methodology, new technology, and CAD tools for WSI. Six wafer scale systems have been fabricated and three of much larger size are being designed. Figure 1 shows one of these packaged WS circuits. The accomplishments and current research status of this project, which was conceived in 1979 [1], are described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. I. Raffel, “On the Use of Nonvolatile Programmable Links for Restructurable VLSI,” Proceedings of the 1979 Cal tech Conference on VLSI, Pasadena, CA, pp. 95–104.

    Google Scholar 

  2. J. I. Raffel, “The RVLSI Approach to Wafer Scale Integration,” in Wafer Scale Integration, ed. by C. Jesshope and W. Moore, Bristol: Adam Hilger, pp. 199–203, 1986.

    Google Scholar 

  3. J. A. Yasaitis, G. H. Chapman, and J. I. Raffel, “Low Resistance Laser Formed Lateral Links,” Electron Device Letters, vol. EDL-3, pp. 184–186, 1984.

    Google Scholar 

  4. J. I. Raffel, J. F. Freidin, and G. H. Chapman, “Laser Formed Connections Using Polyimide,” Applied Physics Letters, vol. 42, pp. 705–706, 1983.

    Article  Google Scholar 

  5. G. H. Chapman, “Laser-Linking Technology For RVLSI,” in Wafer Scale Integration, ed by C. Jesshope and W. Moore, Bristol: Adam Hilger, pp. 204–215, 1986.

    Google Scholar 

  6. J. I. Raffel, M. L. Naiman, R. L. Burke, G. H. Chapman, and P. G. Gottschalk, “Laser Programmed Vias for Restructurable VLSI,” International Electron Devices Meeting Technical Digest, Washington, DC, pp. 132–135, 1980.

    Google Scholar 

  7. G. H. Chapman, J. I. Raffel, J. A. Yasaitis, and S. M. Cheston, “Laser Linking for Restructurable VLSI,” Conference on Lasers and Electro-optics Technical Digest, Phoenix, AZ, pp. 60–63, 1982.

    Google Scholar 

  8. B. Mathur, J. A. Burns, and G. H. Chapman, “Improvement of the AC Characteristics of an Amorphous Silicon-RVLSI Link Insulator by Hydrogenation,” presentation at Electronic Materials Conference, 1984.

    Google Scholar 

  9. G. H. Chapman, and J. A. Burns, “Enhanced Operation of Wafer-Scale Circuits Using Nitrided a-Si Laser Links,” Conference on Lasers and Electro-optics Technical Digest, San Francisco, CA, pp. 147–149, 1986.

    Google Scholar 

  10. J. A. Burns, G. H. Chapman, and B. L. Emerson, “Programmable Connections Through Plasma Deposited Silicon Nitride,” Electro-Chemical Society, vol. 86–2, pp. 481–482, 1986.

    Google Scholar 

  11. J. A. Bums, G. H. Chapman, and T. O. Herndon, “Applications of Plasma-Deposited SiN to Wafer-Scale Integrated Circuits,” IEEE Transactions on Electron Devices, vol. ED-34, pp. 2374–2375, 1987.

    Google Scholar 

  12. G. H. Chapman, and J. A. Burns, “Silicon Nitride as a Protection Layer for Laser Linked Wafer Scale Integration,” Conference on Lasers and Electro-optics Technical Digest, Baltimore, MD, pp. 270–271, 1987.

    Google Scholar 

  13. J. M. Canter, G. H. Chapman, B. Mathur, M. L. Naiman, and J. I. Raffel, “A Laser-Induced Ohmic Link for Wafer Scale Integration in Standard CMOS Processing,” IEEE Transactions on Electron Devices, vol. ED-33, p. 1861, 1986.

    Article  Google Scholar 

  14. G. H. Chapman and J. I. Raffel, “Laser Linking for Defect Avoidance and Customisation,” Proceedings of the IFIP International Workshop on Wafer-Scale Integration, Brunel University, England, September 23–25, 1987, to be published.

    Google Scholar 

  15. J. M. Canter, G. H. Chapman, and J. I. Raffel, “A Laser-Diffused Link for Wafer-Scale Integration Using Standard CMOS Processing,” Conference on Lasers and Electro-optics Technical Digest, Anaheim, CA pp. 338–340, 1988.

    Google Scholar 

  16. S. S. Cohen and G. H. Chapman, “Laser Beam Processing and Wafer-Scale Integration,” Chapter in Beam Processing Technologies, ed. by N. G. Einspruch, S. S. Cohen, and R. N. Singh, Academic Press, to be published.

    Google Scholar 

  17. S. S. Cohen, P. W. Wyatt, G. H. Chapman, and J. M. Canter, “Laser-Induced Diode Linking for Wafer-Scale Integration,” IEEE Transactions on Electron Devices, vol. ED-35, pp. 1533–1550, 1988.

    Article  Google Scholar 

  18. A. H. Anderson, “Computer Aided Design and Testing for RVLSI,” in Wafer Scale Integration, ed. by C. Jesshope and W. Moore., Bristol: Adam Hilger, pp. 216–222, 1986.

    Google Scholar 

  19. S. L. Garverick and E. A. Pierce, “A Single Wafer 16-Point 16 MHz FFT Processor,” Proceedings of the Custom Integrated Circuits Conference, pp. 244–248, 1983.

    Google Scholar 

  20. Stephen Slade, The T Programming Language, Englewood Cliffs: Prentice-Hall, Inc., 1987.

    Google Scholar 

  21. J. K. Ousterhout, G. T. Hamachi, R. R. Mayo, W. S. Scott, and G. S. Taylor, “Magic: A VLSI Layout System,” Proceedings of the 21st Design Automation Conference, Albuquerque, NM, pp. 152–159, 1984.

    Google Scholar 

  22. F. M. Rhodes, “Performance Characteristics of the RVLSI Technology,” in Wafer Scale Integration, ed by G. Saucier and J. Trilhe, New York: Elsevier Science Publishers, pp. 31–42, 1986.

    Google Scholar 

  23. P. W. Wyatt, J. I. Raffel, G. H. Chapman, B. Mathur, J. A. Burns, and T. O. Herndon, “Process Considerations in Restructurable VLSI for Wafer-Scale Integration,” Proceedings of International Electron Devices Meeting, San Francisco, CA, pp. 626–629, 1984.

    Google Scholar 

  24. F. M. Rhodes, “Applications of RVLSI to Signal Processing,” in Wafer Scale Integration, ed by C. Jesshope and W. Moore, Bristol: Adam Hilger, pp. 223–235, 1986.

    Google Scholar 

  25. J. I. Raffel, A. H. Anderson, G. H. Chapman, K. H. Konkle, B. Mathur, A. M. Soares, and P. W. Wyatt, “A Wafer-Scale Digital Integrator,” Proceedings of the IEEE International Conference on Computer Design, Port Chester, NY, pp. 121–126, 1984.

    Google Scholar 

  26. G. H. Chapman, A. H. Anderson, K. H. Konkle, B. Mathur, J. I. Raffel, and A. M. Soares, “Interconnection and Testing of a Wafer-scale Circuit via Laser Processing,” Conference on Lasers and Electro-Optics Technical Digest, Anaheim, CA, pp. 222–223, 1984.

    Google Scholar 

  27. J. I. Raffel, A. H. Anderson, G. H. Chapman, K. H. Konkle, B. Mathur, A. M. Soares, and P. W. Wyatt, “A Wafer-Scale Digital Integrator Using Restructurable VLSI,” IEEE Transactions on Electron Devices, vol. ED-32, pp. 479–486, 1985.

    Article  Google Scholar 

  28. R. O. Duda and P. E. Hart, “Use of the Hough Transform to Detect Lines and Curves in Pictures,” Communications of the Association for Computing Machinery, vol. 15, pp. 11–15, 1972.

    Article  Google Scholar 

  29. F. M. Rhodes, J. J. Dituri, G. H. Chapman, B. E. Emerson, A. M. Soares, and J. I. Raffel, “A Monolithic Hough Transform Processor Based on Restructurable VLSI,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 10, pp. 106–110, 1988.

    Article  Google Scholar 

  30. J. R. Mann and F. M. Rhodes, “A Wafer Scale DTW Multiprocessor,” Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, Tokyo, Japan, pp. 1557–1560, April, 1986.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Raffel, J., Anderson, A.H., Chapman, G.H. (1989). Laser Restructurable Technology and Design. In: Swartzlander, E.E. (eds) Wafer Scale Integration. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1621-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1621-3_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8896-1

  • Online ISBN: 978-1-4613-1621-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics