Circumvention of drug resistance with calcium channel blockers and monoclonal antibodies

  • Takashi Tsuruo
Part of the Cancer Treatment and Research book series (CTAR, volume 48)


One of the major obstacles in current cancer chemotherapy is the development of drug resistance during treatment. Drug resistance in cancer patients is complex. Reasons for clinical resistance include metabolic inactivation and excretion of antitumor agents by the liver, kidney, and other organs. In addition, it has been found that tumor cells can acquire resistance to anticancer drugs. It is generally accepted that drug resistance at the cellular level (cellular resistance) is also an important mechanism of drug resistance in patients.


Calcium Channel Blocker Multidrug Resistance Chinese Hamster Ovary Cell Antitumor Agent Vinca Alkaloid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Biedler, J.L. and Peterson, R.H.F. (1981). Altered plasma membrane glyco-conjugates of Chinese hamster cells with acquired resistance to actinomycin D, daunorubicin and vincristine. In Molecular Actions and Targets for Cancer Chemotherapeutic Agents, eds. Sartorelli, Lazilo and Bertino. Academic Press, New York.Google Scholar
  2. 2.
    Ling, V. (1983). Genetic basis of drug resistance in mammalian cells. In Drug and Hormone Resistance in Neoplasia, eds. Bruchovsky and Goldie. CRC Press.Google Scholar
  3. 3.
    Chabner, B.A., Clendeninn, N.J. and Curt G.A. (1983). Symposium on cellular resistance to anticancer drugs. Cancer Treat. Rep. 67:855–932.PubMedGoogle Scholar
  4. 4.
    Sugimoto, Y. and Tsuruo T. (1988). Development of multidrug resistance in rodent cell lines. In Molecular and Cellular Biology of Multidrug Resistance in Tumor cells, ed. Roninson, I.B. Plenum Press, New York, in press.Google Scholar
  5. 5.
    Baskin, F., Roserberg, R.N. and Dev, V. (1981). Correlation of double-minute chromosomes with unstable multidrug cross-resistance in uptake mutants of neuroblastome cells. Proc. Natl. Acad. Sci. USA 78:3654–3658.PubMedGoogle Scholar
  6. 6.
    Biedler, J.L., Chang, T., Meyers, M.B., Peterson, R.H.F. and Spengler, B.A. (1983). Drug resistance in Chinese hamster lung and mouse tumor cells. Cancer Treat. Rep. 67:859–867.PubMedGoogle Scholar
  7. 7.
    Tsuruo, T., Iida-Saito, H., Kawabata, H., Oh-hara, T., Hamada, H. and Utakoji, T. (1986). Characteristics of resistance to Adriamycin in human myelogenous leukemia K562 resistant to Adriamycin and in isolated clones. Jpn. J. Cancer Res. 77:682–692.PubMedGoogle Scholar
  8. 8.
    Danø, K. (1973). Active outward transport of daunomycin in resistant Ehrlich ascites tumor cells. Biochim. Biophys. Acta 323:466–483.PubMedGoogle Scholar
  9. 9.
    Skovsgaard, T. (1978). Mechanism of cross-resistance between vincristine and daunorubicin in Ehrlich ascites tumor cells. Cancer Res. 38:4722–4727.PubMedGoogle Scholar
  10. 10.
    Inaba, M., Kobayashi, H., Sakurai, Y. and Johnson, R.K. (1979). Active efflux of daunorubicin and Adriamycin in sensitive and resistant sublines of P388 leukemia. Cancer Res. 39:2200–2203.PubMedGoogle Scholar
  11. 11.
    Tsuruo, T., Iida, H., Tsukagoshi, S. and Sakurai, Y. (1981). Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res. 41:1967–1972.PubMedGoogle Scholar
  12. 12.
    Kartner, N., Shales, M., Riordan, J.R. and Ling, V. (1983). Daunorubicin-resistant Chinese hamster ovary cells expressing multidrug resistance and cell-surface P-glycoprotein. Cancer Res. 43:4413–4419.PubMedGoogle Scholar
  13. 13.
    Ling, V., Kartner, N., Sudo, T., Siminovitch, L. and Riordan, J.R. (1983). Multidrug resistance phenotype in Chinese hamster ovary cells. Cancer Treat. Rep. 67:869–874.PubMedGoogle Scholar
  14. 14.
    Peterson, R.H.F., Meyers, M.B., Spengler, B.A. and Biedler, J.L. (1983). Alteration of plasma membrane glycopeptides and gangliosides of Chinese hamster cells accompanying development of resistance to daunorubicin and vincristine. Cancer Res. 43:222–228.PubMedGoogle Scholar
  15. 15.
    Beck, W.T., Mueller, T.J. and Tanzer, L.R. (1979). Altered surface membrane glycoproteins in vinca alkaloid-resistant human leukemic lymphoblasts. Cancer Res. 39:2070–2076.PubMedGoogle Scholar
  16. 16.
    Bhalla, K., Hindenburg, A., Taub, R.N. and Grant, S. (1985). Isolation and characterization of an anthracycline-resistant human leukemic cell line. Cancer Res. 45:3657–3662.PubMedGoogle Scholar
  17. 17.
    Meyers, M.B. and Biedler, J.L. (1981). Increased synthesis of a low molecular weight protein in vincristine-resistant cells. Biochem. Biophys. Res. Commun. 99:228–235.PubMedGoogle Scholar
  18. 18.
    Meyers, M.B., Spengler, B.A., Chang, T-D., Melera, P.W. and Biedler, J.L. (1985). Gene amplification-associated cytogenetic aberrations and protein changes in vincristine-resistant Chinese hamster, mouse, and human cells. J. Cell Biol. 100:588–597.PubMedGoogle Scholar
  19. 19.
    Martinsson, T., Dahllof, B., Wettergren, Y., Leffler, H. and Levan, G. (1985). Pleiotrope drug resistance and gene amplification in a SEW A mouse tumor cell line: Complex relations revealed by drug uptake data, and lipid and protein analysis. Exp. Cell Res. 158:382–394.PubMedGoogle Scholar
  20. 20.
    Tsuruo, T., Iida, H., Kawabata, H., Tsukagoshi, S. and Sakurai, Y. (1984). High calcium content of pleiotropic drug-resistant P388 and K562 leukemia and Chinese hamster ovary cells. Cancer Res. 44:5095–5099.PubMedGoogle Scholar
  21. 21.
    Nair, S., Samy, T.S. and Krishan, A. (1986). Calcium, Calmodulin, and protein content of adriamycin-resistant and -sensitive murine leukemic cells. Cancer Res. 46:229–232.PubMedGoogle Scholar
  22. 22.
    Babson, J.R., Abell, N.S. and Reed, D.J. (1981). Protective role of the glutathione redox cycle against Adriamycin-mediated toxicity in isolated hepatocytes. Biochem. Pharmacol. 30:2299–2304.PubMedGoogle Scholar
  23. 23.
    Mungikar, A., Chitnis, M. and Gothoskar, B. (1981). Mixed-function oxidase enzymes in adriamycin-sensitive and resistant sublines of P388 leukemia. Chem. Biol. Interact. 35:119–124.PubMedGoogle Scholar
  24. 24.
    Batist, G., Tulpule, A., Sinha, B.K., Katki, A.G., Myers, C.E. and Cowan, K.H. (1986). Overexpression of a novel anionic glutathione transferase in multidrug-resistant human breast cancer cells. J. Biol. Chem. 33:15544–15549.Google Scholar
  25. 25.
    Hamilton, T.C., Masuda, H.M. and Ozols, R.F. (1988). The multidrug resistant phenotype and its relationship to glutathione. In Drug Resistance, ed. Kessel, D. CRC Press, in press.Google Scholar
  26. 26.
    Hamilton, T.C., Winker, M.A., Louie, K.G.,, Batist, G., Behrens, B.C., Tsuruo, T., Grotzinger, K.R.,, McKoy, W.M., Young, R.C. and Ozols, R.F. (1985). Augmentation of adriamycin, melphalan, and cisplatin cytotoxicity in drug-resistant and -sensitive human ovarian carcinoma cell lines by buthionine sulfoximine mediated glutathione depletion. Biochem. Pharmacol. 34:2583–2586.PubMedGoogle Scholar
  27. 27.
    Yusa, K., Hamada, H. and Tsuruo, T. (1988). Comparison of glutathione S-transferase activity between drug-resistant and -sensitive human tumor cells: Is glutathione S-transferase associated with drug-resistance? Cancer Chemother. Pharmacol. 22:17–20.PubMedGoogle Scholar
  28. 28.
    Ling, V., Aubin, J.E., Chase, A. and Sarangi, F. (1979). Mutants of Chinese hamster ovary (CHO) cells with altered colcemid-binding affinity. Cell 18:423–430.PubMedGoogle Scholar
  29. 29.
    Cabrai, F., Sobel, M.E. and Gottesman, M.M. (1980). CHO mutants resistant to colchicine, colcemid or griseofulvin have an altered β-tubulin. Cell 20:29–36.Google Scholar
  30. 30.
    Houghton, J.A., Houghton, P.J., Hazelton, B.J. and Douglass, E.C. (1985). In situ selection of a human rhabdomyosarcoma resistant to vincristine with altered β-tubulines. Cancer Res. 45:2706–2712.PubMedGoogle Scholar
  31. 31.
    Tsuruo, T., Iida, H., Tsukagoshi, S. and Sakurai, Y. (1982). Increased accumulation of vincristine and adriamycin in drug-resistant tumor cells following incubation with calcium antagonists and calmodulin inhibitors. Cancer Res. 42:4730–4733.PubMedGoogle Scholar
  32. 32.
    Tsuruo, T., Iida, H., Yamashiro, M., Tsukagoshi, S. and Sakurai, Y. (1982). Enhancement of vincristine- and adriamycin-induced cytotoxicity by verapamil in P388 leukemia and its resistant sublines to vincristine and adriamycin. Biochem. Pharmacol. 31:3138–3140.PubMedGoogle Scholar
  33. 33.
    Tsuruo, T. (1983). Reversal of acquired resistance to vinca alkaloids and anthracycline antibiotics. Cancer Treatment Rep. 67:889–894.Google Scholar
  34. 34.
    Tsuruo, T., Iida, H., Nojiri, ML, Tsukagoshi, S. and Sakurai, Y. (1983). Circumvention of vincristine and adriamycin resistance in vitro and in vivo by calcium influx blockers. Cancer Res. 43:2905–2910.PubMedGoogle Scholar
  35. 35.
    Slater, L.M., Murray, S.L., Wetzel, M.M., Wisdom, R.H. and Du Vail, E.M. (1982). Verapamil restoration of daunorubicin responsiveness in daunorubicin-resistant Ehrlich ascites cells. J. Clin. Invest. 10:1131–1134.Google Scholar
  36. 36.
    Ramu, A., Shan, T.C. and Glaubiger, D. (1983). Enhancement of doxorubicin and vinblastine sensitivity in anthracycline-resistant P388 cells. Cancer Treat. Rep. 67: 895–899.PubMedGoogle Scholar
  37. 37.
    Ramu, A., Fuks, Z., Gatt, S. and Glaubiger, D. (1984). Reversal of acquired resistance to doxorubicin in P388 murine leukemia cells by perhexiline meleate. Cancer Res. 44:144–148.PubMedGoogle Scholar
  38. 38.
    Ganapathi, R. and Grabowski, D. (1983). Enhancement of sensitivity to Adriamycin in resistant P388 leukemia by the calmodulin inhibitor trifluoperazine. Cancer Res. 43:3696–3699.PubMedGoogle Scholar
  39. 39.
    Rogan, A.M., Hamilton, T.C., Young, R.C., Klecker, R.W. and Ozols, R.F. (1984). Reversal of Adriamycin resistance by verapamil in human ovarian cancer. Science 224:994–996.PubMedGoogle Scholar
  40. 40.
    Tsuruo, T., Iida, H., Naganuma, K., Tsukagoshi, S. and Sakurai, Y. (1983). Promotion by verapamil of vincristine responsiveness in tumor cell lines inherently resistant to the drug. Cancer Res. 43:808–813.PubMedGoogle Scholar
  41. 41.
    Tsuruo, T., Iida, H., Nojiri, M., Tsukagoshi, S. and Sakurai, Y. (1983). Potentiation of vincristine and adriamycin effects in human hemopoietic tumor cell lines by calcium antagonists and calmodulin inhibitors. Cancer Res. 43:2267–2272.PubMedGoogle Scholar
  42. 42.
    Ozols, R.F. (1985). Pharmacologic reversal of drug resistance in ovarian cancer. Semin. Oncol. 12:114–122.Google Scholar
  43. 43.
    Kessel, D. and Wilberding, C. (1984). Mode of action of calcium antagonists which alter anthracycline resistance. Biochem. Pharmacol. 33:1157–1160.PubMedGoogle Scholar
  44. 44.
    Yanovich, S. and Preston, L. (1984). Effects of verapamil on daunomycin cellular retention and cytotoxicity in P388 leukemic cells. Cancer Res. 44:1743–1747.PubMedGoogle Scholar
  45. 45.
    Ganapathi, R., Grabowski, T., Turinic, R. and Valanzuela, R. (1984). Correlation between potency of calmodulin inhibitors and effects on cellular levels and cytotoxic activity of doxorubicin (Adriamycin) in resistant P388 mouse leukemia cells. Eur. J. Cancer Clin. Oncol. 20:799–806.PubMedGoogle Scholar
  46. 46.
    Scheid, W., Opermann, B. and Traut, H. (1984). The cytogenetic efficiency of the antitumor agents bleomycin and peplomycin is enhanced by the heart drug verapamil (isoptin). Experientia 40:746–747.PubMedGoogle Scholar
  47. 47.
    Scheid, W. and Traut, H. (1985). Synergistic enhancement of the bleomycin and peplomycin induced mitotic index reduction by verapamil. Arzneim.-Forsch./Drug Res. 35:1717–1719.Google Scholar
  48. 48.
    Murray, S.L., Du Vail, E.M. and Slater, L.M. (1984). Calcium modifies the accumulation and retention of daunorubicin by Ehrlich ascites carcinoma. Cancer Chemother. Pharmacol. 13:69–70.Google Scholar
  49. 49.
    Yalowich, J.C. and Ross, W.E. (1984). Potentiation of etoposide-induced DNA damage by calcium antagonists in L1210 cells in vitro. Cancer Res. 44:3360–3365.PubMedGoogle Scholar
  50. 50.
    Yalowich, J.C. and Ross, W.E. (1985). Verapamil-induced augmentation of etoposide accumulation in L1210 cells in vitro. Cancer Res. 45:1651–1656.PubMedGoogle Scholar
  51. 51.
    Kessel, D. and Wilberding, C. (1985). Anthracycline resistance in P388 murine leukemia and its circumvention by calcium antagonists. Cancer Res. 45:1687–1691.PubMedGoogle Scholar
  52. 52.
    Tsuruo, T., Kawabata, H., Nagumo, N., Iida, H., Kitatani, Y., Tsukagoshi, S. and Sakurai, Y. (1985). Potentiation of antitumor agents by calcium channel blockers with special reference to cross resistance patterns. Cancer Chemother. Pharmacol. 15:16–19.PubMedGoogle Scholar
  53. 53.
    Lampidis, T.J., Munck, J.N., Krishan, A. and Tapiero, H. (1985). Reversal of resistance to Rhodamine 123 in Adriamycin-resistant Friend leukemia cells. Cancer Res. 45:2626–2631.PubMedGoogle Scholar
  54. 54.
    Yalowich, J.C, Zucali, J.R., Gross, M.A. and Ross, W.E. (1985). Effects of verapamil on etoposide, vincristine, and Adriamycin activity in normal human bone marrow granulocyte-macrophage progenitors and in human K562 leukemia cells in vitro. Cancer Res. 45:4921–4924.PubMedGoogle Scholar
  55. 55.
    Ganapathi, R., Grabowski, D. and Schmidt, H. (1986). Factors governing the modulation of vinca-alkaloid resistance in doxorubicin-resistant cells by the calmodulin ihibitor trifluoperazine. Biochem Pharmacol. 35:673–678.PubMedGoogle Scholar
  56. 56.
    Racker, E., Wu, L.T. and Westcott, D. (1986). Use of slow Ca2+ channel blockers to enhance inhibition by taxol of growth of drug-sensitive and -resistant Chinese hamster ovary cells. Cancer Treat. Rep. 70:275–278.PubMedGoogle Scholar
  57. 57.
    Lazo, J.S., Chen, D.L., Gallicchio, V.S. and Hait, W.N. (1986). Increased lethality of calmodulin antagonists and bleomycin to human bone marrow and bleomycin-resistant malignant cells. Cancer Res. 46:2236–2240.PubMedGoogle Scholar
  58. 58.
    Akiyama, S., Shiraishi, N., Kuratomi, Y., Nakagawa, M. and Kuwano, M. (1986). Circumvention of multiple-drug resistance in human cancer cells by thioridazine, trifluoperazine, and chlorpromazine. J. Natl. Cancer Inst. 76:839–844.PubMedGoogle Scholar
  59. 59.
    Klohs, W.D., Steinkampf, R.W., Havlick, M.J. and Jackson, R.C. (1986). Resistance to anthrapyrazoles and anthracyclines in multidrug-resistance P388 murine leukemia cells: Reversal by calcium blockers and calmodulin antagonists. Cancer Res. 46:4352–4356.PubMedGoogle Scholar
  60. 60.
    Kessel, D. (1986). Interactions among membrane transport systems: Anthracyclines, calcium antagonists and anti-estrogens Biochem. Pharmacol. 35:2825–2826.PubMedGoogle Scholar
  61. 61.
    Kikuchi, Y., Miyauchi, M., Kizawa, I., Oomori, K. and Kato, K. (1986). Establishment of a cisplatin-resistant human ovarian cancer cell line. J. Natl. Cancer Inst. 77:1181–1185.PubMedGoogle Scholar
  62. 62.
    Slater, L.M., Murray, S.L., Wetzel, M.W., Sweet, P. and Stupecky, M. (1986). Verapamil potentiation of VP-16–213 in acute lymphatic leukemia and reversal of pleiotropic drug resistance. Cancer Chemother. Pharmacol. 16:50–54.PubMedGoogle Scholar
  63. 63.
    Beck, W.T., Cirtain, M.C., Look, A.T. and Ashmun, R.A. (1986). Reversal of vinca alkaloid resistance but not multiple drug resistance in human leukemic cells by verapamil. Cancer Res. 46:778–784.PubMedGoogle Scholar
  64. 64.
    Warr, J.R., Brewer, F., Anderson, M. and Fergusson, J. (1986). Verapamil hypersensitivity of vincristine resistant Chinese hamster ovary cell lines. Cell Biology Int. Rep. 10:389–399.Google Scholar
  65. 65.
    Nakagawa, M., Akiyama, S., Yamaguchi, T., Shiraishi, N., Ogata, J. and Kuwano, M. (1986). Reversal of multidrug resistance by synthetic isoprenoids in the KB human cancer cell line. Cancer Res. 46:4453–4457.PubMedGoogle Scholar
  66. 66.
    Yamaguchi, T., Nakagawa, M., Shiraishi, N., Yoshida, T., Kiyosue, T., Arita, M., Akiyama, S. and Kuwano, M. (1986). Overcoming drug resistance in cancer cells with synthetic isoprenoids J. Natl. Cancer Inst. 76:947–953.PubMedGoogle Scholar
  67. 67.
    Harker, W.G., Bauer, D., Etiz, B.B., Newman, R.A. and Sikic, B.I. (1986). Verapamil-mediated sensitization of doxorubicin-selected pleiotropic resistance in human sarcoma cells: Selectively for drugs which produce DNA scission. Cancer Res. 46:2369–2373.PubMedGoogle Scholar
  68. 68.
    Willingham, M.C., Cornwell, M.M., Caradarelli, C.O., Gottesman, M.M. and Pastan, I. (1986). Single cell analysis of daunomycin uptake and efflux in multidrug-resistant and -sensitive KB cells: Effects of verapamil and other drugs. Cancer Res. 46:5941–5946.PubMedGoogle Scholar
  69. 69.
    Ikeda, H., Nakano, G., Nagashima, K., Sakamoto, K., Harasawa, N., Kitamura, T., Nakamura, T. and Nagamachi, Y. (1987). Verapamil enhancement of antitumor effect of cis-diamminedichloroplatinum (II) in nude mouse-grown human neuroblastoma. Cancer Res. 47:231–234.PubMedGoogle Scholar
  70. 70.
    Hindenburg, A.A., Baker, M.A., Gleyzer, E., Stewart, V.J., Case, N. and Taub, R.N. (1987). Effect of verapamil and other agents on the distribution of anthracyclines and on reversal of drug resistance. Cancer Res. 47:1421–1425.PubMedGoogle Scholar
  71. 71.
    Martin, S.K., Oduola, A.M. and Milhous, W.K. (1987). Reversal of chloroquine resistance in Plasmodium falciparum by verapamil. Science 235:899–901.PubMedGoogle Scholar
  72. 72.
    Broxterman, H.J., Kuiper, C.M., Schuurhuis, G.J., van der Hoeven, J.J.M., Pinedo, H.M. and Lankelma, J. (1987). Daunomycin accumulation in resistant tumor cells as a screening model for resistance modifying drugs: Role of protein binding. Cancer Lett. 35:87–95.PubMedGoogle Scholar
  73. 73.
    Tsuruo, T., Iida, H., Tsukagoshi, S. and Sakurai, Y. (1985). Cure of mice bearing P388 leukemia by vincristine in combination with a calcium channel blocker. Cancer Treat. Rep. 69:523–525.PubMedGoogle Scholar
  74. 74.
    Riehm, H. and Biedler, J.L. (1972). Potentiation of drug effect by Tween 80 in Chinese hamster cells resistant to actinomycin D and daunomycin. Cancer Res. 32:1195–1200.PubMedGoogle Scholar
  75. 75.
    Skovsgaard, T. (1980). Circumvention of resistance to daunorubin by N-acetyl-daunorubicin in Ehrlich ascites tumor Cancer Res. 40:1077–1083.PubMedGoogle Scholar
  76. 76.
    See, Y.P., Carlsen, S.A., Till, J.E. and Ling, V. (1974). Increased drug permeability in Chinese hamster ovary cells in the presence of cyanide. Biochim. Biophys. Acta 373:242–252.PubMedGoogle Scholar
  77. 77.
    Medoff, J., Medoff, G., Goldstein, M.N., Schlessinger, D. and Kobayashi, G.S. (1975). Amphotericin B-induced sensitivity to actinomycin D in drug-resistant HeLa cells. Cancer Res. 35:2548–2552.PubMedGoogle Scholar
  78. 78.
    Carlsen, S.A., Till, J.E. and Ling, V. (1976). Modulation of membrane drug permeability in Chinese hamster ovary cells. Biochim. Biophys. Acta 455:900–912.PubMedGoogle Scholar
  79. 79.
    Beck-Hansen, N.T., Till, J.E. and Ling, V. (1976). Pleiotropic phenotypes of colchicine-resistant CHO cells: cross-resistance and collateral sensitivity. J. Cell. Physiol. 80:23–32.Google Scholar
  80. 80.
    Friche, E., Skovsgaard, T., Nissen, N.I., Di Marco, A. and Danø, K. (1983). Accumulation of daunorubicin analogues in daunorubicin-resistant cells and their effect on accumulation of (3H)daunorubicin. In Anthracyclines and Cancer Therapy, ed. Hansen, H.H., Excepta Medica, Amsterdan pp. 49–55.Google Scholar
  81. 81.
    Skovsgaard, T., Danø, K. and Nissen, N.I. (1984). Chemosensitizers counteracting acquired resistance to anthracyclines and vinca alkaloids in vivo. A new treatment principle. Cancer Treat. Rev. 11:63–72.PubMedGoogle Scholar
  82. 82.
    Inaba, M. and Sakurai, Y. (1979). Enhanced efflux of actinomycin D, vincristine, and vinblastine in adriamycin-resistant subline of P388 leukemia. Cancer Lett. 8:111–115.PubMedGoogle Scholar
  83. 83.
    Tsuruo, T., Iida, H., Tsukagoshi, S. and Sakurai, Y. (1981). Prevention of vinblastine-induced cytotoxicity by ruthenium red. Biochem. Pharmacol. 30:213–216.PubMedGoogle Scholar
  84. 84.
    Tsuruo, T., Iida, H., Tsukagoshi, S. and Sakurai, Y. (1981). Enhancement of vinblastine-induced cytotoxicity by lysolecithin and phosphatidylinositol. Cancer Lett. 13:133–137.PubMedGoogle Scholar
  85. 85.
    Medoff, G., Valerlote, F. and Dleckman, J. (1981). Potentiation of anticancer agents by amphotericin B.J., Natl. Cancer Inst. 67:131–135.Google Scholar
  86. 86.
    Tsuruo, T., Iida, H., Kitatani, Y., Yokota, K., Tsukagoshi, S. and Sakurai, Y. (1984). Effects of quinidine and related compounds on cytotoxicity and cellular accumulation of vincristine and Adriamycin in drug-resistant tumor cells. Cancer Res. 44:4303–4307.PubMedGoogle Scholar
  87. 87.
    Ramu, A., Glaubiger, D. and Fuks, Z. (1984). Reversal of acquired resistance to doxorubicin in P388 murine leukemia cells by tamoxifen and other triparanol analogues. Cancer Res. 44:4392–4395.PubMedGoogle Scholar
  88. 88.
    Inaba, M., Nagashima, K., Sakurai, Y., Fukui, M. and Yanagi, Y. (1984). Reversal of multidrug resistance by non-antitumor anthracycline analogs. Gann 75:1049–1052.PubMedGoogle Scholar
  89. 89.
    Tsuruo, T. and Iida, H. (1986). Effects of cytochalasins and colchicine on the accumulation and retention of daunomycin and vincristine in drug resistant tumor cells. Biochem. Pharmacol. 35:1087–1090.PubMedGoogle Scholar
  90. 90.
    Slater, L.M., Sweet, P., Stupecky, M. and Gupta, S. (1986). Cyclosporin A reverses vincristine and daunorubicin resistance in acute lymphatic leukemia in vitro. J. Clin. Invest. 77:1405–1408.PubMedGoogle Scholar
  91. 91.
    Slater, L.M., Sweet, P., Stupecky, M., Wetzel, M.W. and Gupta, S. (1986). Cyclosporin A corrects daunorubicin resistance in Ehrlich ascites carcinoma. Br. J. Cancer 54:235–238.PubMedGoogle Scholar
  92. 92.
    Tsuruo, T. and Saito, H. (1987). Difference in effects of alkyl-lysophospholipids and verapamil on vincristine transport in vincristine-sensitive and -resistant human myelogenous leukemia K562. Anticancer Res. 7:39–44.PubMedGoogle Scholar
  93. 93.
    Meador, J., Sweet, P., Stupecky, M., Wetzel, M., Murray, S., Gupta, S. and Slater, L. (1987). Enhancement by cyclosporin A of daunorubicin efficacy in Ehrlich ascites carcinoma and murine hepatoma 129. Cancer Res. 47:6216–6219.PubMedGoogle Scholar
  94. 94.
    Chauffert, B., Martin, M., Hammann, A., Michael, M.F. and Martin, F. (1986). Aminodarone-induced enhancement of doxorubicin and 4′-deoxydoxorubicin cytotoxicity to rat colon cancer cells in vitro and in vivo. Cancer Res. 46:825–830.PubMedGoogle Scholar
  95. 95.
    Chauffert, B., Rey, D., Coudert, B., Dumas, M. and Martin, F. (1987). Aminodarone is more efficient than verapamil in reversing resistance to anthracyclines in tumor cells. Br. J. Cancer 56:119–122.PubMedGoogle Scholar
  96. 96.
    Hamada, H. and Tsuruo, T. (1988). Purification of the P-glycoprotein associated with multidrug resistance. P-Glycoprotein is an ATP-ase. J. Biol. Chem. 263:1454–1458.PubMedGoogle Scholar
  97. 97.
    Greenberg, D.A., Carpenter, C.L. and Messing, R.O. (1987). Calcium channel antagonist properties of the antineoplastic antiestrogen tamoxifen in the PC 12 neurosecretory cell line. Cancer Res. 47:70–74.PubMedGoogle Scholar
  98. 98.
    Colombani, P.M., Robb, A. and Hess, A.D. (1985). Cyclosporin A binding to calmodulin: A possible site of action on T lymphocytes. Science 228:337–339.PubMedGoogle Scholar
  99. 99.
    Gros, P., Croop, J. and Housman, D. (1986). Mammalian multidrug resistance gene: Complement cDNA sequence indicates strong homology to bacterial transport proteins. Cell 47:371–380.PubMedGoogle Scholar
  100. 100.
    Chen, C., Chin, J. E., Ueda, K., Clark, D.P., Pastan, I., Gottesman, M.M. and Roninson, I.B. (1986). Internal duplication and homology with bacterial transport protein in the mdr1 (P-glycoprotein) gene from multidrug-resistant human cells. Cell 47:382–389.Google Scholar
  101. 101.
    Garlach, J.H., Endicott, J.A., Juranka, P.F., Henderson, G., Sarani, F., Deuchars, K.L. and Ling, V. (1986). Homology between P-glycoprotein and a bacterial haemolysin transport protein suggests a model for multidrug resistance. Nature 324:485–489.Google Scholar
  102. 102.
    Sugimoto, Y. and Tsuruo, T. (1987). DNA mediated transfer and cloning of a human multidrug-resistant gene of Adriamycin-resistant myelogenous leukemia K562. Cancer Res. 47:262–2625.Google Scholar
  103. 103.
    Cornwell, M.M., Gottesman, M.M. and Pastan, I. (1986). Increased vinblastine binding to membrane vesicles from multidrug resistant KB cells. J. Biol. Chem. 261:7921–7928.PubMedGoogle Scholar
  104. 104.
    Cornwell, M.M., Safa, A.R., Felsted, R.L., Gottesman, M.M. and Pastan, I. (1986). Membrane vesicles from multidrug-resistant cancer cells contain a 150- to 170-kDa protein detected by photoaffinity labeling. Proc. Natl. Acad. Sci. U.S.A. 83:3847–3850.PubMedGoogle Scholar
  105. 105.
    Cornwell, M.M., Pastan, I. and Gottesman, M.M. (1987). Certain calcium channel blockers bind specifically to multidrug-resistant human KB carcinoma membrane vesicles and inhibit drug binding to P-glycoprotein. J. Biol. Chem. 262:2166–2170.PubMedGoogle Scholar
  106. 106.
    Safa, A.R., Glover, C.J., Sewell, J.L., Meyers, M.B., Biedler, J.L. and Felsted, R.L. (1987). The calcium channel blocker-binding specificity of a 150–180 kDA surface membrane glycoprotein from multidrug-resistant. cells. Proc. Am. Assoc. Cancer Res. 119.Google Scholar
  107. 107.
    Natio, M., Hamada, H. and Tsuruo, T. (1988). ATP/Mg2+-dependent binding of vincristine to the plasma membrane of multidrug-resistant K562 cells. J. Biol. Chem. 263:11887–11891.Google Scholar
  108. 108.
    Cornwell, M.M., Tsuruo, T., Gottesman, M.M. and Pastan, I. (1987). ATP-binding properties of P glycoprotein from multidrug-resistant KB cells. FASEB J. 1:51–54.PubMedGoogle Scholar
  109. 109.
    Vassilev, P.M., Kanazirska, M.P., Charamella, L.J., Dimitrov, N.V. and Tien, H.T. (1987) Changes in calcium channel activity in membranes from cis-diammine-dichloroplatinum (U)-resistant and -sensitive L1210 cells. Cancer Res. 47:519–522.PubMedGoogle Scholar
  110. 110.
    Gudkov, A.V., Massino, J.S., Chernova, O.B. and Kopnin, B.P. (1985). Gene amplification in Djungarian hamster cells possessing decreased plasma membrane permeability for colchicine and some unrelated drugs. Chromosome 92:16–24.Google Scholar
  111. 111.
    Koch, G., Smith, M., Twentyman, P. and Wright, K. (1986). Identification of a novel calcium-binding protein (CP22) in multidrug-resistant murine and hamster cells. FEBS Lett. 195:275–279.PubMedGoogle Scholar
  112. 112.
    Hamada, H., Hagiwara, K., Nakajima, T. and Tsuruo, T. (1987). Phosphorylation of the Mr 170,000 to 180,000 glycoprotein specific to multidrug-resistant tumor cells: Effects of verapamil, trifluoperazine, and phorbol esters. Cancer Res. 47:2860–2865.PubMedGoogle Scholar
  113. 113.
    Nishizuka, Y. (1980). Three multifunctional protein kinase systems in transmembrane control. In Molecular Biology, Biochemistry and Biophysics, volume 32, eds. Chapeville, F. and Haenni, A.L., Springer-Verlag, New York, pp. 113–135.Google Scholar
  114. 114.
    Takai, Y., Kishimoto, A., Kawahara, Y., Minakuchi, R., Sano, K., Kikkawa, U., Mori, T., Yu, B., Kaibuchi, K. and Nishizuka, Y. (1981). Calcium and phosphatidylinositol turnover as signalling for transmembrane control of protein phosphorylation. Adv. Cyclic Nuc. Res. 14:301–313.Google Scholar
  115. 115.
    Mori, T., Takai, Y., Minakuchi, R., Yu, B. and Nishizuka, Y. (1980). Inhibitory action of chlorpromazine, dibucaine, and other phospholipid-interacting drugs on calcium-activated, phospholipid-dependent protein kinase. J. Biol. Chem. 225:8378–8380.Google Scholar
  116. 116.
    Fine, R.L., Patel, J., Hamilton T.C., Cowan, K., Curt, G.A., Friedman, M.A. and Chabner, A.B. (1986). Activation of protein kinase C (PKC) increases vincristine (VC) efflux and resistance in drug-sensitive MCF-7 cells. Proc. Am. Assoc. Cancer Res. 27:1073.Google Scholar
  117. 117.
    Marsh, W. and Center M.S. (1986). Dimethylsulfoxide, retinoic acid, and 12–0-tetradecanoylphorbol-13-acetate induce a selective decrease in the phosphorylation of P150, a surface membrane phosphoprotein of HL60 cells resistant to adriamycin. Biochem. Biophys. Res. Commun. 138:9–16.PubMedGoogle Scholar
  118. 118.
    Bessho, F., Kinumaki, H., Kobayashi, M., Habu, H., Nakamura, K., Yokota, S., Tsuruo, T. and Kobayashi, N. (1985). Treatment of children with refractory acute lymphocytic leukemia with vincristine and diltiazem. Med. Pediat. Oncol. 13:199–202.Google Scholar
  119. 119.
    Presant, C.A., Kennedy, P.S., Wiseman, C., Gala, K., Bouzaglou, A., Wyres, M. and Naessig, V. (1986). Verapamil reversal of clinical doxorubicin resistance in human cancer: A Wilshire oncology medical group pilot phase I-II study. Am. J. Clin. Oncol. 9:355–357.PubMedGoogle Scholar
  120. 120.
    Kerr, D.J., Graham, J., Cummings, J., Morrison, J.G., Thompson, G.G., Brodie, M.J. and Kaye, S.B. (1986). The effect of verapamil on the pharmacokinetics of adriamycin. Cancer Chemother. Pharmacol. 18:239–242.PubMedGoogle Scholar
  121. 121.
    Minatogawa, S., Shitara, N., Nakamura, N., Takakura, K., Akanuma, A. and Nakagawa, K. (1987). Effect of chemoradiotherapy combined with Ca-blocker on malignant brain tumors. The 46th Annual Meeting of the Japan Neurosurgical Society. 2-D-482, Tokyo.Google Scholar
  122. 122.
    Fine, R.L., Koizumi, S., Curt, G.A. and Chabner, B.A. (1984). Verapamil (VP) does not enhance anticancer drug toxicity for human marrow myeloid-macrophage colony-forming units (CFU-CM). Proc. Ann. Meet. Am. Soc. Clin. Oncol. 3:40.Google Scholar
  123. 123.
    Fine, R.L., Koizumi, S., Curt, G.A. and Chabner, B.A. (1984). Verapamil (VP) does not enhance anticancer drug toxicity for human marrow myeloid-macrophage colony-forming units (CFU-CM). Proc. Ann. Meet. Am. Soc. Clin. Oncol. 3:40.Google Scholar
  124. 123.
    Yoshida, K., Takahashi, T., Nakame, Y., Saitoh, H., Horiuchi, S., Kaneoya, F. and Negishi, T. (1987). Bladder instillation of verapamil as a means of enhancing the efficacy of chemotherapy for superficial bladder carcinoma: Influence of bladder instillation of verapamil on the cardiovascular system. Jpn. J. Cancer Chemother. 14:506–510.Google Scholar
  125. 124.
    O’Hara, C.J. and Price, G.B. (1982). A monoclonal antibody demonstrating specificity for drug-resistant cells. Immunol. Lett. 5:15–18.PubMedGoogle Scholar
  126. 125.
    O’Hara, C.J. (1984). Characterization of monoclonal antibodies demonstrating specificity for drug-resistant tumor cells. Diss. Abstr. Int. 45:433-B.Google Scholar
  127. 126.
    O’Hara, C.J., Grober, J. and Price, G.B. (1984). Cells resistant to cytotoxic drugs are recognized by monoclonal antibody. J. Clin. Immunol. 4:403–411.PubMedGoogle Scholar
  128. 127.
    Danks, M.K., Metzger, D.W., Ashmun, R.A. and Beck, W.T. (1985). Monoclonal antibodies to glycoproteins of vinca alkaloid-resistant human leukemic cells. Cancer Res. 45:3222–3224.Google Scholar
  129. 128.
    Lathan, B., Edwards, D.P., Dressler, L.G., Von Hoff, D.D. and McGuire, W.L. (1985). Immunological detection of Chinese hamster ovary cells expressing a multidrug resistance phenotype. Cancer Res. 45:5064–5069.PubMedGoogle Scholar
  130. 129.
    Kartner, N., Evernden-Porelle, D., Bradley, G. and Ling, V. (1985). Detection of P-glycoprotein in multidrug-resistant cell lines by monoclonal antibodies. Nature 316:820–823.PubMedGoogle Scholar
  131. 130.
    Brox, A., Price, G. and Sullivan, A.K. (1985). An antigen related to the phenotype of multidrug resistance can be induced in vivo and used as a target for immunotherapy of rat leukemia. Leukemia Res. 9:987–992.Google Scholar
  132. 131.
    Hamada, H. and Tsuruo, T. (1986). Functional role for the 170- to 180-kDa glycoprotein specific to drug-resistant tumor cells as revealed by monoclonal antibodies. Proc. Natl. Acad. Sci. USA 83:7785–7789.PubMedGoogle Scholar
  133. 132.
    Hamada, H. and Tsuruo, T. (1987). Detection of membrane antigens by a covalent cross-linking method with monoclonal antibodies. Anal. Biochem. 160:483–488.PubMedGoogle Scholar
  134. 133.
    Dalton, W.S., Durie, B.G.M., Alberts, D.S., Gerlach, J.H. and Cress, A.E. (1986). Characterization of a new drug-resistant human myeloma cell line that expresses P-glycoprotein. Cancer Res. 46:5125–5130.PubMedGoogle Scholar
  135. 134.
    Bell, D.R., Garlach, J.H., Karter, N., Buick, R.N. and Ling, V. (1985). Detection of P-glycoprotein in ovarian cancer: A molecular marker associated with multidrug resistance. J. Clin. Oncol. 3:311–315.PubMedGoogle Scholar
  136. 135.
    Tsuruo, T., Sugimoto, Y., Hamada, H., Roninson, I., Okumura, M., Adachi, K., Morishima, Y. and Ohno, R. (1987). Detection of multidrug resistance markers, P-glycoprotein, and mdr1 mRNA in human leukemia cells. Jpn. J. Cancer Res. 178:1415–1419.Google Scholar
  137. 136.
    Hamada, H. and Tsuruo, T. (1987). Growth inhibition of multidrug-resistant cells by monoclonal antibodies against P-glycoprotein. In Molecular and Cellular Biology of Multidrug Resistance in Tumor Cells, ed. Roninson, I.B., Plenum Press, New York, in press.Google Scholar
  138. 137.
    Witters, L.A., Vater, C.A. and Lienhard, G.E. (1985). Phosphorylation of the glucose transport in vitro and in vivo by protein kinase C. Nature 315:777–778.PubMedGoogle Scholar
  139. 138.
    Beck, W.T., Cirtain, M.C., Ashmun, R.A. and Mirro, J. (1986). Differentiation and the multiple drug resistance phenotype in human leukemic cells. Cancer Res. 46:4571–4575.PubMedGoogle Scholar
  140. 139.
    Center M.S. (1985). Mechanisms regulating cell resistance to Adriamycin: Evidence that drug accumulation in resistant cells is modulated by phosphorylation of a plasma membrane glycoprotein. Biochem. Pharmacol. 34:1471–1476.Google Scholar
  141. 140.
    Fitzgerald, D.J., Willingham, M.C, Cardarelli, C.O., Hamada, H., Tsuruo, T., Gottesman, M.M. and Pastan, I. (1987). A monoclonal antibody-pseudomonas toxin conjugate that specifically kills multidrug-resistant cells. Proc. Natl. Acad. Sci. USA 84:4288–4292.PubMedGoogle Scholar
  142. 141.
    Sugimoto, Y., Roninson, LB. and Tsuruo, T. (1987). Decreased expression of the amplified mdr1 gene in revertants of multidrug-resistant human myelogenous leukemia K562 occurs without loss of amplified DNA. Mol. Cell. Biol. 7:4549–4552.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Takashi Tsuruo

There are no affiliations available

Personalised recommendations