Skip to main content

Oncogenes in human solid tumors

  • Chapter
Book cover Oncogenes

Part of the book series: Cancer Treatment and Research ((CTAR,volume 47))

Abstract

The past decade has witnessed great changes in our understanding of the molecular origins of cancer. Toward this end, major contributions have come from the identification of oncogenes and their cellular counterparts, proto-oncogenes, as well as recessive anti-oncogenes, or tumor-suppressor genes. These general topics have been extensively reviewed [1–16]. The purpose of this chapter is to address what is known about oncogene abnormalities in specific human solid tumors, including the incidence and mode of oncogene activation, its putative role in tumor formation and metastasis, and the clinical significance of oncogene abnormalities relating to tumor behavior and patient prognosis. Before focusing on specific tumor types, it is useful to summarize those concepts pertinent to oncogene activation that might help in understanding the present evidence supporting a role for oncogenes in the development or progression of naturally occurring human tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Varmus H: The molecular genetics of cellular oncogenes. Annu Rev Genet 18:553–612, 1984.

    PubMed  CAS  Google Scholar 

  2. Land H, Parada L, Weinberg R: Cellular oncogenes and multistep carcinogenesis. Science 222:771–778, 1983.

    PubMed  CAS  Google Scholar 

  3. Weinberg R: Ras oncogenes and their molecular mechanisms of carcinogenesis. Blood 64:1143–1145, 1984.

    PubMed  CAS  Google Scholar 

  4. Varmus H: Viruses, genes, and cancer. Cancer 55: 2324–2328, 1985.

    PubMed  CAS  Google Scholar 

  5. Bishop M: Viruses, genes, and cancer. Cancer 55: 2329–2333, 1985.

    PubMed  CAS  Google Scholar 

  6. Weinberg R: The action of oncogenes in the cytoplasm and nucleus. Science 230:770–776, 1985.

    PubMed  CAS  Google Scholar 

  7. Bishop M: Viral oncogenes. Cell 42:23–28, 1985.

    PubMed  CAS  Google Scholar 

  8. Marshall C: Human oncogenes. In: Weiss R (ed): RNA Tumor Viruses, 2nd edition. New York, Cold Spring Harbor Laboratories, 1985, pp 487–558.

    Google Scholar 

  9. Sager R: Genetic suppression of tumor formation: a new frontier in cancer research. Cancer Res 46:1573–1580, 1986.

    PubMed  CAS  Google Scholar 

  10. Barbacid M: Mutagens, oncogenes and cancer. Trends in Genetics 2:188–192, 1986.

    Google Scholar 

  11. Rosen N, Israel M: Genetic abnormalities as biological tumor markers. Sem Oncol 14: 213–231, 1987.

    CAS  Google Scholar 

  12. Marshall C: Oncogenes and growth control. Cell 49:723–725, 1987.

    Google Scholar 

  13. Moore J, Evan G: Immunoassays for oncoproteins. Nature 327:733–734, 1987.

    Google Scholar 

  14. Barbacid M: Ras genes. Annu Rev Biochem 56:779–827, 1987.

    PubMed  CAS  Google Scholar 

  15. Bishop M: The molecular genetics of cancer. Science 235:305–311, 1987.

    PubMed  CAS  Google Scholar 

  16. Friend S, Dryja T, Weinberg R: Oncogenes and tumor suppressing genes. N Engl J Med 318:618–622, 1988.

    PubMed  CAS  Google Scholar 

  17. Durst M, Croce C, Gissmann L, Schwarz E, Huebner K: Papillomavirus sequences integrate near cellular oncogenes in some cervical carcinomas. Proc Natl Acad Sci USA 84:1070–1074, 1987.

    PubMed  CAS  Google Scholar 

  18. Schwab M, Alitalo K, et al: Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumor. Nature 305:245–248, 1983.

    PubMed  CAS  Google Scholar 

  19. Schwab M, Ellison J, et al.: Enhanced expression of the human gene N-myc consequent to amplification of DNA may contribute to malignant progression of neuroblastoma. Proc Natl Acad Sci USA 81:4940–4944, 1984.

    PubMed  CAS  Google Scholar 

  20. Brodeur G, Seeger R, Schwab M, Varmus H, Bishop M: Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 224: 1121–1124, 1984.

    PubMed  CAS  Google Scholar 

  21. Seeger R, Brodeur G et al.: Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N Engl J Med 313:1111–1116, 1985.

    PubMed  CAS  Google Scholar 

  22. King R, Kraus M, Aaronson S: Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science 229:974–978, 1985.

    PubMed  CAS  Google Scholar 

  23. Slamon D, Clark G, et al.: Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182, 1987.

    PubMed  CAS  Google Scholar 

  24. vd Vijver M, vd Bersselaar R, et al.: Amplification of the neu (c-erbB-2) oncogene in human mammary tumors is relatively frequent and is often accompanied by amplification of the linked c-erbA oncogene. Mol Cel Biol 7:2019–2023, 1987.

    Google Scholar 

  25. Little C, Nau M, Carney D, Gazdar A, Minna J: Amplification and expression of the c-myc oncogene in human lung cancer cell lines. Nature 306:194–196, 1983.

    PubMed  CAS  Google Scholar 

  26. Saksela K, Bergh J, Lehto V-P, Nilsson K, Alitalo K: Amplification of the c-myc oncogene in a subpopulation of human small cell lung cancer. Cancer Res 45:1823–1927, 1985.

    PubMed  CAS  Google Scholar 

  27. Nau M, Brooks B, et al.: A new myc-related gene amplified and expressed in human small cell lung cancer. Nature 318:69–73, 1985.

    PubMed  CAS  Google Scholar 

  28. Nau M, Brooks B, et al.: Human small-cell lung cancers show amplification and expression of N-myc gene. Proc Natl Acad Sci USA 83:1092–1096, 1986.

    PubMed  CAS  Google Scholar 

  29. Wong A, Ruppert J, et al.: Gene amplification of c-myc and N-myc in small cell carcinoma of the lung. Science 233:461–464, 1986.

    PubMed  CAS  Google Scholar 

  30. Heighway J, Hasleton P: c-Ki-ras amplification in human lung cancer. Br J Cancer 53: 285–287, 1986.

    PubMed  CAS  Google Scholar 

  31. Slamon D, deKernion J, Verma I, Cline M: Expression of cellular oncogenes in human malignancies. Science 224:256–262, 1984.

    PubMed  CAS  Google Scholar 

  32. Aurias A, Rimbaut C, et al.: Chromosomal translocations in Ewings sarcoma. N Engl J Med 309(8):496–497, 1983.

    Google Scholar 

  33. Turc-Carel C, Phiklip I, et al.: Chromosomal translocations in Ewings sarcoma. N Engl J Med 309:497–498, 1983.

    Google Scholar 

  34. Bechet J-M, Bornkamp G, Lenoir G: The c-sis oncogene is not activated in Ewings sarcoma. N Engl J Med 310:393, 1984.

    PubMed  CAS  Google Scholar 

  35. Kessel AGV, Turc-Carel C, et al. Translocation of oncogene c-sis from chromosome 22 to chromosome 11 in a Ewing sarcoma-derived cell line. Mol Cell Biol 5:427–429, 1985.

    PubMed  Google Scholar 

  36. Drabkin H, Bradley C, Patterson D: Translocation of c-myc in the hereditary renal cell carcinoma associated with a t(3;8) (pl4.2;q24;13) chromosomal translocation. Proc Natl Acad Sci USA 82:6980–6984, 1985.

    PubMed  CAS  Google Scholar 

  37. Rodenhuis S, vd Wetering M, et al.: Mutational activation of the K-ras oncogene: a possible pathogenetic factor in adenocarcinoma of the lung. N Engl J Med 317:929–935, 1987.

    PubMed  CAS  Google Scholar 

  38. Bos J, Fearon E, et al.: Prevalence of ras gene mutations in human colorectal cancers. Nature 327:293–297, 1987.

    PubMed  CAS  Google Scholar 

  39. Forrester K, Almoguera C, et al.: Detection of high incidence of K-ras oncogenes during human colon tumorigenesis. Nature 327:298–303, 1987.

    PubMed  CAS  Google Scholar 

  40. Cavenee W, Hansen M, et al.: Genetic origin of mutations predisposing to retinoblastoma. Science 228:501–503, 1985.

    PubMed  CAS  Google Scholar 

  41. Koufos A, Hansen M, et al.: Loss of heterozygosity in three embryonal tumors suggests a common pathogenetic mechanism. Nature 316:330–334, 1985.

    PubMed  CAS  Google Scholar 

  42. Brodeur G, Green A, et al.: Cytogenetic features of human neuroblastoma and cell lines. Cancer Res 41:4678–4686, 1981.

    PubMed  CAS  Google Scholar 

  43. Solomon E, Voss R, et al.: Chromosome 5 loss in human colorectal carcinomas. Nature 328:616–619, 1987.

    PubMed  CAS  Google Scholar 

  44. Okamoto M, Sasaki M, et al.: Loss of constitutional heterozygosity in colon carcinoma from patients with familial polyposis coli. Nature 331:273–277, 1988.

    PubMed  CAS  Google Scholar 

  45. Atkin N, Baker M: Chromosome 10 deletion in carinoma of the prostate. N Engl J Med 312:315, 1985.

    PubMed  CAS  Google Scholar 

  46. Teyssier J, Henry I, et al.: Recurrent deletion of the short arm of chromosome 3 in human renal cell carcinomas: shift of the c-raf locus. J Natl Cancer Inst 77:1187–1191, 1986.

    PubMed  CAS  Google Scholar 

  47. Zbar B, Brauch H, Talmadge C, Linehan M: Loss of alleles on the short arm of chromo-some 3 in renal cell carcinoma Nature 327:721–724, 1987.

    PubMed  CAS  Google Scholar 

  48. Kok K, Osinga J, et al.: Deletion of a DNA sequence at the chromosomal region 3p21 in all major types of lung cancer. Nature 330:578–581, 1987.

    PubMed  CAS  Google Scholar 

  49. Fearon E, Feinberg A, Hamilton S, Vogelstein B: Loss of genes on the short arm of chromosome 11 in bladder cancer. Nature 318:377–380, 1985.

    PubMed  CAS  Google Scholar 

  50. Seizinger B, dl Monte S, et al.: Molecular genetic approach to human meningioma: loss of genes on chromosome 22. Proc Nat Acad Sci USA 84:5419–5423, 1987.

    PubMed  CAS  Google Scholar 

  51. Mathew C, Smith B, et al.: Deletion of genes on chromosome 1 in endocrine neoplasia. Nature 328:524–526, 1987.

    PubMed  CAS  Google Scholar 

  52. Mathew C, Chin K, et al.: Linked genetic marker for multiple endocrine neoplasia type 2A on Chromosome 10. Nature 328:527–528, 1987.

    PubMed  CAS  Google Scholar 

  53. Simpson N, Kidd K et al.: Assignment of multiple endocrine neoplasia type 2A to chromosome 10 by linkage. Nature 328:528–530, 1987.

    PubMed  CAS  Google Scholar 

  54. Larsson C, Skogseid B, et al.: Multiple endocrine neoplasia type 1 gene maps to chromo-some 11 and is lost in insulinoma. Nature 332:85–87, 1988.

    PubMed  CAS  Google Scholar 

  55. Miyaki M, Sato C, et al.: Amplification and enhanced expression of cellular oncogene c-Ki-ras-2 in human epidermoid carcinoma of the lung. Jpn J Cancer Res 76:260–263, 1985.

    PubMed  CAS  Google Scholar 

  56. Taya Y, Hosogai K, et al.: A novel combination of K-ras and mye amplification accompanied by point mutational activation of Ki-ras in a human lung cancer. EMBO J 3: 2943–2946, 1986.

    Google Scholar 

  57. Yokota J, T-Yokota Y, et al.: Alternations of myc, myb and Hras proto-oncogenes in cancers are frequent and show clinical correlation. Science 231:261–265, 1986.

    PubMed  CAS  Google Scholar 

  58. Balmain A, Pragnell I: Mouse skin carcinoma induced in vivo by chemical carcinogens have a transforming Harvey-ras oncogene. Nature 303:72–74, 1983.

    PubMed  CAS  Google Scholar 

  59. Balmain A, Ramsden M, Bowden G, Smith J: Activation of the mouse cellular Harvey-ras gene in chemically induced benign shin papillomas. Nature 307:658–660, 1984.

    PubMed  CAS  Google Scholar 

  60. Quintanilla M, Brown K, Ramsden M, Balmain A: Carcinogen-specific mutation and amplification of Ha-ras during mouse skin carcinogenesis. Nature 322:78–80, 1986.

    PubMed  CAS  Google Scholar 

  61. Reynolds S, Stowers et al.: Detection and identification of activated oncogenes in spontaneously occurring benign and malignant hepatocellular tumors of the B6C3F1 mouse. Proc Natl Acad Sci USA 83:33–37, 1986.

    PubMed  CAS  Google Scholar 

  62. Sukumar S, Notario V, Martin-Zanca D, Barbacid M: Induction of mammary carcinomas in rats by nitroso-methylurea involves malignant activation of H-ras-1 locus by single point mutations. Nature 306:658–661, 1983.

    PubMed  CAS  Google Scholar 

  63. Johnson B, Ihde D, et al. Myc family oncogene amplification in tumor cell lines established from small cell lung cancer patients and its relationship to clinical status and course. J Clin Invest 79:1629–1634, 1987.

    PubMed  CAS  Google Scholar 

  64. Sikora K, Chan S, et al.: C-myc oncogene expression in colorectal cancer. Cancer 59: 1289–1295, 1987.

    PubMed  CAS  Google Scholar 

  65. Thor A, Hand H, et al.: Monoclonal antibodies define differential ras gene expression in malignant and benign colonic disease. Nature 311:562–565, 1984.

    PubMed  CAS  Google Scholar 

  66. Monnat M, Tardy S, et al.: Prognostic implications of the cellular genes myc, fos, Ha-ras, and Ki-ras in colon carcinoma. Int J Cancer 40:293–299, 1987.

    PubMed  CAS  Google Scholar 

  67. Lundy J, Grimson R, et al.: Elevated ras oncogene expression correlates with lymph node metastases in breast cancer patients. J Clin Oncol 4:1321–1325, 1986.

    PubMed  CAS  Google Scholar 

  68. Viola M, Formowitz F, et al.: Expression of ras oncogene p21 in prostate cancer. N Engl J Med 314:133–137, 1986.

    PubMed  CAS  Google Scholar 

  69. Riou G, Le M, et al.: C-myc protooncogene expression and prognosis in early carcinoma of the uterine cervix. Lancet 1:761–763, 1987.

    PubMed  CAS  Google Scholar 

  70. Ohuchi N, Thor A, et al.: Expression of the 21,000 molecular weight was protein in a spectrum of benign and malignant human mammary tissues. Cancer Res 46:2511–2519, 1986.

    PubMed  CAS  Google Scholar 

  71. Gallick G, Kurzrock R, et al.: Expression of p21ras in fresh primary and metastatic human colorectal tumors. Proc Nat Acad Sci USA 82:1795–1799, 1985.

    PubMed  CAS  Google Scholar 

  72. Hendy-Ibbs P, Cox H, Evan G, Watson J: Flow cytometric quantitation of DNA and c-myc oncoprotein in archival biopsies of uterine cervix neoplasia. Br J Cancer 55:275–282, 1987.

    PubMed  CAS  Google Scholar 

  73. Liu E, Dollbaum C, et al.: Molecular lesions involved in the progression of a human breast cancer. Oncogene, 3:323–327, 1988.

    PubMed  CAS  Google Scholar 

  74. Hand P, Vilasi V, et al.: Quantitation of Harvey ras p21 enhanced expression in human breast and colon carcinomas. J Natl Cancer Inst 79:59–65, 1987.

    PubMed  CAS  Google Scholar 

  75. Brodeur G, Hayes A, et al.: Consistent copy number in simultaneous or consecutive neuroblastoma samples from sixty individual patients. Cancer Res 47:4248–4253, 1987.

    PubMed  CAS  Google Scholar 

  76. Rochlitz C, Scott G, et al.: Incidence of activating ras oncogene mutations associated with primary and metastatic human breast cancer. Cancer Res 49:357–360, 1989.

    PubMed  CAS  Google Scholar 

  77. Capon D, Chen E, Levinson A: Complete nucleotide sequence of the T24 human bladder carcinoma oncogene and its normal homologue. Nature 302:33–37, 1983.

    PubMed  CAS  Google Scholar 

  78. Krontiris T, DiMartino N, Colb M, Parkinson D: Unique allelic restriction fragments of the human Ha-ras locus in leukocyte and tumor DNAs of cancer patients. Nature 313:369–374, 1985.

    PubMed  CAS  Google Scholar 

  79. Lidereau R, Escot C, et al.: High frequency of rare alleles of the human c-Ha-ras-1 proto-oncogene in breast cancer patients. J Natl Cancer Inst 77:697–701, 1986.

    PubMed  CAS  Google Scholar 

  80. Heighway Y, Thatcher N, Cerny N, Haselton P: Genetic predisposition to lung cancer. Br J Cancer 53:453–458, 1986.

    PubMed  CAS  Google Scholar 

  81. Ceccherini-Nelli L, DeRe V, et al.: Ha-ras-1 restriction fragment length polymorphism and susceptibility to colon adenocarcinoma. Br J Cancer 56:1–5, 1987.

    PubMed  CAS  Google Scholar 

  82. Land H, Parada L, Weinberg R: Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304:596–602, 1983.

    PubMed  CAS  Google Scholar 

  83. Dalla-Favera R, Wong-Staal F, Gallo R: Oncogene amplification in promyelocytic leukemia cell line HL 60 and primary leukemic cells of the same patient. Nature 299:61–63, 1982.

    PubMed  CAS  Google Scholar 

  84. Taya Y, Hosagai K, et al.: A novel combination of Ki-ras and myc amplification accompanied by point mutational activation of Ki-ras in a human lung cancer. EMBO J 3: 2943–2946, 1984.

    PubMed  CAS  Google Scholar 

  85. Yamada H, Sakamoto H, et al.: Amplifications of both c-Ki-ras with a point mutation and c-myc in a primary pancreatic cancer and its metastatic tumors in lymph nodes. Jpn J Cancer Res 77:370–375, 1986.

    PubMed  CAS  Google Scholar 

  86. Nomura N, Yamamoto T, et al.: DNA amplification of the c-myc and c-erbB-1 genes in a human stomach cancer. Gann 77:1188–1192, 1986.

    PubMed  CAS  Google Scholar 

  87. Cardiff R, Young L: Mouse mammary tumor biology: a new synthesis. In: Essex M, Todaro G, Zurhausen H (eds): Viruses in Naturally Occurring Cancers. Cold Spring Harbor, NY, 1980, pp 1105–1114.

    Google Scholar 

  88. Dickson C, Smith R, Brookes S, Peters G: Tumorigenesis by mouse mammary tumor virus: proviral activation of a cellular gene in the common integration region int-2. Cell 37: 529–536, 1984.

    PubMed  CAS  Google Scholar 

  89. Lidereau R, Callahan R, et al.: Amplification of the int-2 gene in primary human breast tumors. Oncogene Res 2:285–291, 1988.

    PubMed  CAS  Google Scholar 

  90. Zarbel H, Sukumar S, et al.: Direct mutagenesis of Ha-ras-1 oncogenes by N-nitroso-N-methylurea during initiation of mammary carcinogenesis in rats. Nature 315:382–385, 1985.

    Google Scholar 

  91. Kraus M, Yuasa Y, Aaronson S: A position 12-activated H-ras oncogene in all HS578T mammary carcinosarcoma cells but not normal mammary cells of the same patient. Proc Natl Acad Sci USA 81:5384–5388, 1984.

    PubMed  CAS  Google Scholar 

  92. Kozma S, Bogaard M, et al.: The human c-Kirsten ras gene is activated by a novel mutation in coden 13 in the breast carcinoma cell line MDA-MB231. Nucleic Acid Res 15:5963–5971, 1987.

    PubMed  CAS  Google Scholar 

  93. Prosperi M-T, Even J, et al.: Two adjacent mutations at position 12 activate the K-ras2 oncogene of a human mammary tumor cell line. Oncogene Res 1:121–128, 1987.

    PubMed  CAS  Google Scholar 

  94. Birchmeier C, Birnbaum D, et al.: Characterization of an activated human ras gene. Mol Cell Biol 6:3109–3116, 1986.

    PubMed  CAS  Google Scholar 

  95. Kozbor D, Croce C: Amplification of the c-myc oncogene in one of five human breast carcinoma cell lines. Cancer Res 44:438–441, 1984.

    PubMed  CAS  Google Scholar 

  96. Lebeau J, Goubin G: Amplification of the epidermal growth factor receptor gene in the BT20 breast carcinoma cell line. Int J Cancer 40:189–191, 1987.

    PubMed  CAS  Google Scholar 

  97. Kasid A, Lippman M, et al.: Transfection of v-rasH DNA into MCF-7 human breast cancer cells bypasses dependence on estrogen for tumorigenicity. Science 228:725–728, 1985.

    PubMed  CAS  Google Scholar 

  98. Muller W, Sinn E, Puttengale P, Wallace R, Leder P: Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 54:105–115, 1988.

    PubMed  CAS  Google Scholar 

  99. Escot C, Theillet C, et al.: Genetic alternations of the c-myc protooncogene (myc) in human primary breast carcinomas. PNAS 83:4834–4838, 1986.

    PubMed  CAS  Google Scholar 

  100. Cline M, Battifora H, Yokota Y: Proto-oncogene abnormalities in human breast cancer: Correlations with anatomic features and clinical course of the disease. J Clin Oncol 5: 999–1006, 1987.

    PubMed  CAS  Google Scholar 

  101. Theillet C, Lidereau R, et al.: Loss of c-H-ras-1 allele and aggressive human primary breast carcinomas. Cancer Res 46:4776–4781, 1986.

    PubMed  CAS  Google Scholar 

  102. Lidereau R, Mathieu-Mahul D, et al.: Presence of an allelic EcoRI restriction fragment of the c-mos locus in leukocyte and tumor cell DNAs of breast cancer patients. Proc Natl Acad Sci USA 82:7068–7070, 1985.

    PubMed  CAS  Google Scholar 

  103. Hand H, Thor A, et al.: Monoclonal antibodies of predefined specificity detect activated ras gene expression in human mammary and colon carcinomas. Proc Natl Acad Sci USA 81:5227–5231, 1984.

    PubMed  CAS  Google Scholar 

  104. Spandidos D, Agnantis N: Human malignant tumors of the breast as compared to their respective normal tissue have elevated expression of the Harvey ras oncogene. Anticancer Res 4:269–272, 1984.

    PubMed  CAS  Google Scholar 

  105. Agnantis N, Parissi P, Anagnostakis D, Spandidos D: Comparative study of Harvey-ras oncogene expression with conventional clinicopathologic parameters of breast cancer. Oncology 43:36–39, 1986.

    PubMed  CAS  Google Scholar 

  106. Mariani-Costantini R, Escot C, et al.: In situ c-myc expression and genomic status of the c-myc locus in infiltrating ductal carcinomas of the breast. Cancer Res 48:199–205, 1988.

    PubMed  CAS  Google Scholar 

  107. Fitzpatrick S, Brightwell J, et al.: Epidermal growth factor binding by breast tumor biopsies and relationship to estrogen receptor and progestin receptor levels. Cancer Res 44:3448, 1984.

    PubMed  CAS  Google Scholar 

  108. Perez R, Pascual M, Macias M, Lage A: Epidermal growth factor receptors in human breast cancer. Breast Cancer Res Treat 4:189, 1984.

    PubMed  CAS  Google Scholar 

  109. Kraus M, Popescu N, Amsbaugh S, King R: Overexpression of the EGF receptor-related proto-oncogene erbB-2 in human mammary tumor cell lines by different molecular mechanisms. EMBO J 6:605–610, 1987.

    PubMed  CAS  Google Scholar 

  110. Whittaker S, Walker R, Varley J: Differential expression of cellular oncogenes in benign and malignant human breast tissue. Int J Cancer 38:651–655, 1986.

    PubMed  CAS  Google Scholar 

  111. Cattoretti G, Rilke F, et al.: P53 expression in breast cancer. Int J Cancer 41:178–183, 1988.

    PubMed  CAS  Google Scholar 

  112. Hand H, Vilasi V, et al.: Quantitation of Harvey ras p21 enhanced expression in human breast and colon carcinomas. J Natl Cancer Inst 79:59–65, 1987.

    PubMed  CAS  Google Scholar 

  113. DeBertoli M, Abou-Issa H, Haley B, Sang Cho-Chung Y: Amplified expression of p21 ras protein in hormone-dependent mammary carcinomas of humans and rodents. Biochem Biophys Res Comm 127:699–706, 1985.

    Google Scholar 

  114. Der C, Krontiris T, Cooper G: Transforming genes of human bladder and lung carcinoma cell lines are homologous to the ras genes of Harvey and Kirsten sarcoma viruses. Proc Natl Acad Sci USA 79:3637–3640, 1982.

    PubMed  CAS  Google Scholar 

  115. Capon D, Seeburg P, et al.: Activation of Ki-ras 2 in human colon and lung carcinomas by two different point mutations. Nature 304:507–513, 1983.

    PubMed  CAS  Google Scholar 

  116. Shimizu K, Birnbaum D, et al.: Structure of the Ki-ras gene of the human lung carcinoma cell line Calu-1. Nature 304:497–500, 1983.

    PubMed  CAS  Google Scholar 

  117. Valenzuela D, Groffen J: Four human cell lines with novel mutations in position 12 of c-K-ras oncogene. Nucleic Acid Res 14:843–852, 1986.

    PubMed  CAS  Google Scholar 

  118. Fukui M, Yamamoto T, et al.: Detection of raf-related and two other transforming DNA sequences in human tumors maintained in nude mice. Proc Natl Acad Sci USA 82: 5954–5958, 1985.

    PubMed  CAS  Google Scholar 

  119. Kagimoto M, Miyoski J, et al.: Isolation and characterization of an activation c-H-ras-1 gene from a squamous-cell lung carcinoma cell line. Int J Cancer 35:809–812, 1985.

    CAS  Google Scholar 

  120. Yuasa Y, Srivastava S, et al.: Acquisition of transforming properties by alternative point mutations within c-bas/has human proto-oncogene. Nature 303:755–770, 1983.

    Google Scholar 

  121. Little C, Nau M, et al.: Amplification and expression of the c-myc oncogene in human lung cancer cell lines. Nature 306:194–196, 1983.

    PubMed  CAS  Google Scholar 

  122. Seifter E, Sausville E, Battey J: Comparison of amplified and unamplified c-myc gene structure and expression in human small cell lung carcinoma cell lines. Cancer Res 46: 2050–2055, 1986.

    PubMed  CAS  Google Scholar 

  123. Yoshimoto K, Hirohashi S, Sekiya T: Increased expression of the c-myc gene without gene amplification in human lung cancer and colon cancer cell lines. Jpn J Cancer Res 77: 540–545, 1986.

    PubMed  CAS  Google Scholar 

  124. Yoshimoto K, Shiraishi M, Seliya T: Rearrangement of the c-myc gene in two giant cell carcinomas of the lung. Jpn J Cancer Res 77:731–745, 1986.

    PubMed  CAS  Google Scholar 

  125. Sherwin S, Minna J, et al.: Expression of epidermal and nerve growth factor receptors and soft agar growth production by human lung cancer cells. Cancer Res 41:3538–3542, 1981.

    PubMed  CAS  Google Scholar 

  126. Hunts J, Ueda M, et al.: Hyperproduction and gene amplification of the EGF receptor in squamous cell carcinomas. Gann 76:663–666, 1985.

    PubMed  CAS  Google Scholar 

  127. Hendler F, Ozanne B: Human squamous cell lung cancers express increased epidermal growth factor receptors. J Clin Invest 74:647–651, 1984.

    PubMed  CAS  Google Scholar 

  128. Gamou S, Hunts J, et al.: Molecular evidence for the lack of epidermal growth factor receptor gene expression in small cell lung carcinoma cells. Cancer Res 47:2668–2673, 1987.

    PubMed  CAS  Google Scholar 

  129. Johnson B, Ihde D, et al.: Myc family oncogene amplification in tumor cell lines established from small cell lung cancer patients and its relationship to clinical status and course. J Clin Invest 79:1629–1634, 1987.

    PubMed  CAS  Google Scholar 

  130. Clin M, Battifora H: Abnormalities of protooncogenes in non-small cell lung cancer. Cancer 60:2669–2674, 1987.

    Google Scholar 

  131. Santos E, Martin-Zanca D, et al.: Malignant activation of a K-ras oncogene in lung carcinoma but not in normal tissue of the same patient. Science 223:661–664, 1984.

    PubMed  CAS  Google Scholar 

  132. Nakano H, Yamamoto F, et al.: Isolation of transforming sequences of two human lung carcinomas: Structural and functional analysis of the activated c-K-ras oncogenes. Proc Natl Acad Sci USA 81:71–75, 1984.

    PubMed  CAS  Google Scholar 

  133. Griffin C, Baylin S: Expression of the c-myc oncogene in human small cell lung carcinoma. Cancer Res 45:272–275, 1985.

    PubMed  CAS  Google Scholar 

  134. Nau M, Carney D, et al.: Amplification, expression and rearrangement of c-myc and N-myc oncogenes in human lung cancer. Current Topics Microbiol Immunol 113:172–177, 1984.

    CAS  Google Scholar 

  135. Funa K, Steinholtz L, Nou E, Bergh J: Increased expression of N-myc in human small cell lung cancer biopsies predicts lack of response to chemotherapy and poor prognosis. Am J Clin Pathol 88:216–220, 1987.

    PubMed  CAS  Google Scholar 

  136. Sainsbury J, Farndon J, Sherbet G, Harris A: Epidermal growth factor receptors and estrogen receptors in human breast cancer. Lancet 1:364, 1984.

    Google Scholar 

  137. Veale D, Ashcroft T, Harris A: Epidermal growth factor receptors in non-small cell lung cancer. Br J Cancer 55:513–516, 1987.

    PubMed  CAS  Google Scholar 

  138. Kurzrock R, Gallick G, Guttermann J: Differential expression of p21ras gene products among histological subtypes of fresh primary human lung tumors. Cancer Res 46:1530–1534, 1986.

    PubMed  CAS  Google Scholar 

  139. Hollstein M, Montesano R, Yamasaki H: Presence of an EcoRI RFLP of the c-mos locus in normal and tumor tissue of esophageal cancer patients. Nucleic Acids Res 14:8695, 1986.

    PubMed  CAS  Google Scholar 

  140. Tsuboi K, Hirayoshi K, et al.: (1987). Expression of the c-myc gene in human gastro-intestinal malignancies. Biochem Biophys Res Comm 146:699–704.

    PubMed  CAS  Google Scholar 

  141. Fukushige S-I, Matsubara K-I et al.: Localization of a novel v-erbB-related gene, c-erbB-2, on human chromosome 17 and its amplification in a gastric cancer cell line. Mol Cell Biol 6:955–958, 1986.

    PubMed  CAS  Google Scholar 

  142. Deng G, Lu Y, et al.: Activated c-Ha-ras oncogene with guanine to thymine transversion at the twelfth codon in a human stomach cancer cell line. Cancer Res 47:3195–3198, 1987.

    PubMed  CAS  Google Scholar 

  143. Nakasato F, Sakamoto H, et al.: Amplification of the c-myc oncogene in human stomach cancers. Gann 75:737–742, 1984.

    PubMed  CAS  Google Scholar 

  144. Shibuya M, Yokota J, Ueyama Y: Amplification and expression of a cellular oncogene (c-myc) in human gastric adenocarcinoma cells. Mol Cell Biol 5:414–418, 1985.

    PubMed  CAS  Google Scholar 

  145. Bos J, Verlaan-de Vries M, et al.: A human gastric carcinoma contains a single mutated and amplified normal allele of the Ki-ras oncogene. Nucleic Acids Res 14:1209–1217, 1986.

    PubMed  CAS  Google Scholar 

  146. Staal S: Molecular cloning of the act oncogene and its human homologues AKT1 and AKT2: Amplification of AKT1 in a primary human gastric adenocarcinoma. Proc Natl Acad Sci USA 84:5034–5037, 1987.

    PubMed  CAS  Google Scholar 

  147. Seki T, Fujii G, et al.: Amplification of c-yes-1 proto-oncogene in a primary human gastric cancer. Gann 76:907–910, 1985.

    PubMed  CAS  Google Scholar 

  148. O’Hara B, Oskarsson M, Tainsky M, Blair D: Mechanism of activation of human ras genes cloned from a gastric adenocarcinoma and a pancreatic carcinoma cell line. Cancer Res 46:4695–4700, 1986.

    PubMed  Google Scholar 

  149. Nishida J, Kobayashi Y, Hirai H, Takaku F: A point mutation at codon 13 of the N-ras oncogene in a human stomach cancer. Biochem Biophys Res Comm 146:247–252, 1987.

    PubMed  CAS  Google Scholar 

  150. Shimizu K, Nakatsu Y, et al.: Molecular cloning of an activated human oncogene, homo-logous to v-raf, from primary stomach cancer. Proc Natl Acad Sci USA 82:5641–5645, 1985.

    PubMed  CAS  Google Scholar 

  151. Sakamoto H, Mori M, et al.: Transforming gene from human stomach cancers and a noncancerous portion of stomach mucosa. Proc Natl Acad Sci USA 83:3997–4001, 1986.

    PubMed  CAS  Google Scholar 

  152. Koda T, Sasaki A, Matsushima S, Kakinuma M: A transforming gene, hst, found in NIH 3T3 cells transformed with DNA from three stomach cancers and a colon cancer. Gann 78:325–328, 1987.

    PubMed  CAS  Google Scholar 

  153. Koda T, Matsushima S, et al.: C-myc gene amplification in primary stomach cancer. Gann 76:551–554, 1985.

    PubMed  CAS  Google Scholar 

  154. Czerniak B, Herz F, Koss L, Schlom J: Ras oncogene p21 as a tumor marker in the cytodiagnosis of gastric and colonic carcinomas. Cancer 60:2432–2436, 1987.

    PubMed  CAS  Google Scholar 

  155. Tahara E, Yasui W, et al.: Ha-ras oncogene product in human gastric carcinoma: Correlation with invasiveness, metastasis or prognosis. Gann 77:517–522, 1986.

    PubMed  CAS  Google Scholar 

  156. Yasui W, Sumiyoshi H, et al.: Expression of epidermal growth factor receptor in human gastric and colonic carcinomas. Cancer Res 48:137–141, 1988.

    PubMed  CAS  Google Scholar 

  157. Allum W, Newbold K, et al.: Evaluation of p62c-myc in benign and malignant gastric epithelia. Br J Cancer 56:785–786, 1987.

    PubMed  CAS  Google Scholar 

  158. Yander G, Halsey H, Kenna M, Augenlicht L: Amplification and elevated expression of c-myc in a chemically induced mouse colon tumor. Cancer Res 45:4433–4438, 1985.

    PubMed  CAS  Google Scholar 

  159. McCoy M, Toole J, et al.: Characterization of a human colon/lung carcinoma oncogene. Nature 302:79–81, 1983.

    PubMed  CAS  Google Scholar 

  160. Der C, Cooper G: Altered gene products are associated with activation of cellular rask genes in human lung and colon carcinomas. Cell 302:201–208, 1983.

    Google Scholar 

  161. Alitalo K, Schwab M, et al.: Homogeneously staining chromosomal regions contain amplification copies of an abundantly expressed cellular oncogene (c-myc) in malignant neuroendocrine cells from a human colon carcinoma. Proc Natl Acad Sci USA 80:1707–1711, 1983.

    PubMed  CAS  Google Scholar 

  162. Meltzer S, Ahnen D, et al.: Protooncogene abnormalities in colon cancers and adenomatous polyps. Gastroenterology 92:1174–1180, 1987.

    PubMed  CAS  Google Scholar 

  163. Alexander R, Buxbaum J, Raicht R: Oncogene alternations in primary human colon tumors. Gastroenterology 91:1503–1510, 1986.

    PubMed  CAS  Google Scholar 

  164. Erisman M, Rothberg P, et al.: Deregulation of c-myc gene expression in human colon carcinomas is not accompanied by amplification or rearrangement of the gene. Mol Cell Biol 5:1969–1976, 1985.

    PubMed  CAS  Google Scholar 

  165. Bodmer W, Bailey C, et al.: Localization of the gene for familial adenomatous polyposis on chromosome 5. Nature 328:614–616, 1987.

    PubMed  CAS  Google Scholar 

  166. Calabretta B, Kaczmarek L, et al.: Expression of c-myc and other cell cycle-dependent genes in human colon neoplasia. Cancer Res 45:6000–6004, 1985.

    PubMed  CAS  Google Scholar 

  167. Rothberg P, Spandorfer M, et al.: Evidence that c-myc expression defines two genetically distinct forms of colorectal adenocarcinoma. Br J Cancer 52:629–632, 1985.

    PubMed  CAS  Google Scholar 

  168. Augenlicht L, Augeron C, Yander G, Laboisse C: Overexpression of ras in mucus-secreting colon carcinoma cells of low tumorigenicity. Cancer Res 47:3763–3765, 1987.

    PubMed  CAS  Google Scholar 

  169. Garin Chesa P, Rettig W, et al.: Expression of p21ras in normal and malignant tissues: lack of association with proliferation and malignancy. Proc Natl Acad Sci USA 84:3234–3238, 1987.

    Google Scholar 

  170. Spandidos D, Kerr I: Elevated expression of the human ras oncogene family in pre-malignant and malignant tumors of the colorectum. Br J Cancer 49:681–688, 1984.

    PubMed  CAS  Google Scholar 

  171. Jones D, Ghosh A, Moore M, Schofield P: A critical appraisal of the immunohistochemical detection of the c-myc oncogene product in colorectal cancer. Br J Cancer 56:779–783, 1987.

    PubMed  CAS  Google Scholar 

  172. Stewart J, Evan G, Watson J, Sikora K: Detection of the c-myc oncogene product in colonic polyps and carcinomas. Br J Cancer 53:1–6, 1986.

    PubMed  CAS  Google Scholar 

  173. Chester J, Gaissert H, Ross J, Malt R: Pancreatic cancer in the Syrian hamster induced by N-nitrosobis(2-oxopropyl)amine: co-carcinogenic effect of epidermal growth factor. Cancer Res 46:2954–2957, 1986.

    PubMed  CAS  Google Scholar 

  174. Yamada H, Yoshida T, et al.: Establishment of a human pancreatic adenocarcinoma cell line (PSN-1) with amplifications of both c-myc and activated c-Ki-ras by a point mutation. Biochem Biophys Res Comm 140:167–173, 1986.

    PubMed  CAS  Google Scholar 

  175. Cooper D, Blair D, et al.: Characterization of human transforming genes from chemically transformed, teratocarcinoma, and pancreatic carcinoma cell lines. Cancer Res 44:1–10, 1984.

    PubMed  CAS  Google Scholar 

  176. Hirai H, Okabe T, et al.: Activation of the c-Ki-ras oncogene in a human pancreas carcinoma. Biochem Biophys Res Comm 127:168–174, 1985.

    PubMed  CAS  Google Scholar 

  177. Prassolov V, Sakamoto H, et al.: Activation of c-Ki-ras gene in human pancreatic cancer. Gann 76:792–795, 1985.

    PubMed  CAS  Google Scholar 

  178. Dragani T, Manenti G, et al.: Expression of retroviral sequences and oncogenes in murine hepatocellular tumors. Cancer Res 46:1915–1919, 1986.

    PubMed  CAS  Google Scholar 

  179. Ishikawa F, Takaku F, et al.: Activated c-raf gene in a rat hepatocellular carcinoma induced by 2-amino-3methylimidazo(4,5-f)quinoline. Biochem Biophys Res Comm 132:186–192, 1985.

    PubMed  CAS  Google Scholar 

  180. Ishikawa F, Takaku F, et al.: Activation of rat c-raf during transfection of hepatocellular carcinoma DNA. Proc Natl Acad Sci USA 83:3209–3212, 1986.

    PubMed  CAS  Google Scholar 

  181. Tashiro F, Morimur S, et al.: Expression of the c-Ha-ras and c-myc genes in aflatoxin B1-induced hepatocellular carcinomas. Biochem Biophys Res Comm 138:858–862, 1986.

    PubMed  CAS  Google Scholar 

  182. Wiseman R, Strowers S, et al.: Activating mutations of the c-Ha-ras protooncogene in chemically induced hepatomas of the male B6C3F1 mouse. Proc Natl Acad Sci USA 83:5825–5829, 1986.

    PubMed  CAS  Google Scholar 

  183. Hsieh L, Hsiao W-L, et al.: Expression of retroviral sequences and oncogenes in rat liver tumors induced by diethylnitrosamine. Cancer Res 47:3421–3424, 1987.

    PubMed  CAS  Google Scholar 

  184. Fox T, Wantanabe P: Detection of a cellular oncogene in spontaneous liver tumors of B6C3F1 mice. Science 228:596–597, 1984.

    Google Scholar 

  185. Reynolds S, Stowers S, et al.: Detection and identification of activated oncogenes in spontaneously occurring benign and malignant hepatocellular tumors of the B6C3F1 mouse. Proc Natl Acad Sci USA 83:33–37, 1986.

    PubMed  CAS  Google Scholar 

  186. Huber B, Dearfield K, et al.: Tumorigenicity and transcriptional modulation of c-myc and N-ras oncogenes in a human hepatoma cell line. Cancer Res 45:4322–4329, 1985.

    PubMed  CAS  Google Scholar 

  187. Su T, Lin L, et al.: Expression of c-myc gene in human hepatoma. Biochem Biophys Res Comm 132:264–268, 1985.

    PubMed  CAS  Google Scholar 

  188. Ochiya T, Fujiyama A, et al.: Molecular cloning of an oncogene from a human hepatocellular carcinoma. Proc Natl Acad Sci USA 83:4993–4997, 1986.

    PubMed  CAS  Google Scholar 

  189. Merlino G, Xu Y: Amplification and enhanced expression of the epidermal growth factor receptor gene in human carcinoma cells. Science 224:417–419, 1984.

    PubMed  CAS  Google Scholar 

  190. Rettenmeier C, Sacca R, et al.: Expression of the human c-fms proto-oncogene product (colony-stimulating factor-1 receptor) on peripheral blood mononuclear cells and choriocarcinoma cell lines. J Clin Invest 77:1740–1746, 1986.

    Google Scholar 

  191. Wang L-C, Vass W, Gao C, Chang K: Amplification and enhanced expression of the c-Ki-ras2 protooncogene in human embryonal carcinomas. Cancer Res 47:4192–4198, 1987.

    PubMed  CAS  Google Scholar 

  192. Feig L, Bast R, Knapp R, Cooper G: Somatic activation of ras-k gene in a human ovarian carcinoma. Science 223:698–701, 1984.

    PubMed  CAS  Google Scholar 

  193. Filmus J, Buick R: Stability of c-Ki-ras amplification during progression in a patient with adenocarcinoma of the ovary. Cancer Res 45:4468–4472, 1985.

    PubMed  CAS  Google Scholar 

  194. Filmus J, Trent J, Pullano R, Buick R: A cell line from ovarian carcinoma with amplification of the K-ras gene. Cancer Res 46:5179–5182, 1986.

    PubMed  CAS  Google Scholar 

  195. Xu Y-H, Richert N, et al.: Characterization of epidermal growth factor receptor gene expression in malignant and normal human cell lines. Proc Natl Acad Sci USA 81:7308–7312, 1984.

    PubMed  CAS  Google Scholar 

  196. Gullick W, Marsden J, et al.: Expression of epidermal growth factor receptors on human cervical, ovarian and vulval carcinomas. Cancer Res 46:285–292, 1986.

    PubMed  CAS  Google Scholar 

  197. Covington M, Sikora K, et al.: C-myc expression in cervical cancer. Lancet 1:1260–1261, 1987.

    PubMed  CAS  Google Scholar 

  198. Riou G, Barrois M, et al.: Presence de genomes de Papillomvirus et amplification des oncogenes c-myc et Ha-ras dans des cancers envahissants du col de l’uterus. CR Aca Sci 299:575–580, 1984.

    CAS  Google Scholar 

  199. Ocadiz R, Sauceda R, et al.: High correlation between molecular alterations of the c-myc oncogene and carcinoma of the uterine cervix. Cancer Res 47:4173–4177, 1987.

    PubMed  CAS  Google Scholar 

  200. Sikora K, Evan G, Stewart J, Watson J: Detection of the c-myc oncogene product in testicular cancer. Br J Cancer 52:171–176, 1985.

    PubMed  CAS  Google Scholar 

  201. Watson J, Stewart J, et al.: The clinical significance of flow cytometric c-myc oncoprotein quantitation in testicular cancer. Br J Cancer 53:331–337, 1986.

    PubMed  CAS  Google Scholar 

  202. Fleming W, Hamel A, et al.: Expression of the c-myc protooncogene in human prostatic carcinoma and benign prostatic hyperplasia. Cancer Res 46:1535–1538, 1986.

    PubMed  CAS  Google Scholar 

  203. Fujita J, Yoshida O, et al.: Ha-ras oncogenes are activated by somatic alterations in human urinary tract tumors. Nature 309:464–466, 1984.

    PubMed  CAS  Google Scholar 

  204. Swenson E, Kadlubar F: Thoa In: Felkner IC (ed): Microbial Testers Probing for Carcinogenesis. New York, M. Dekker, 1981, pp 3–33.

    Google Scholar 

  205. Parada L, Tabin C, Shih C, Weinberg R: Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene. Nature 297:474–478, 1982.

    PubMed  CAS  Google Scholar 

  206. Santos E, Tronick S, et al.: T24 human bladder carcinoma oncogene is an activated form of the normal human homologue of BALB- and Harvey-MSV transforming genes. Nature 298:343–347, 1982.

    PubMed  CAS  Google Scholar 

  207. Tabin C, Bradley S, et al.: Mechanism of activation of a human oncogene. Nature 300: 143–149, 1982.

    PubMed  CAS  Google Scholar 

  208. Reddy P, Reynolds R, Santos E, Barbacid M: A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature 300:149–152, 1982.

    PubMed  CAS  Google Scholar 

  209. Fujita J, Srivastava S, et al.: Frequency of molecular alterations affecting ras proto-oncogenes in human urinary tract tumors. Proc Natl Acad Sci USA 82:3849–3853, 1985.

    PubMed  CAS  Google Scholar 

  210. Feinberg A, Vogelstein B, et al.: Mutations affecting the 12th amino acid of c-ras oncogene product occur infrequently in bladder cancer. Science 220:1175–1179, 1983.

    PubMed  CAS  Google Scholar 

  211. Malone P, Visvanathan K, et al.: Oncogenes and bladder cancer. Br J Urology 57:664–667, 1985.

    CAS  Google Scholar 

  212. Ishikawa J, Maeda S, et al.: Lack of correlation between rare Ha-ras alleles and urothelial cancer in Japan. Int J Cancer 40:474–478, 1987.

    PubMed  CAS  Google Scholar 

  213. Neal D, Marsh C, Bennett M: Epidermal growth factor receptors in human bladder cancers: Comparison of invasive and superficial tumors. Lancet 1:366, 1985.

    PubMed  CAS  Google Scholar 

  214. Viola M, Fromowitz F, et al.: Ras oncogene p21 expression is increased in premalignant lesions and high grade bladder carcinoma. J Exp Med 161:1213–1218, 1985.

    PubMed  CAS  Google Scholar 

  215. Friedman W, Rosenblum B, et al.: Oncogenes in laryngeal cancer: Serial passage of transformed cellular DNA. Otolaryngol Head Neck Surg 93:346–350, 1985.

    PubMed  CAS  Google Scholar 

  216. Kasid U, Pfeifer A, et al.: The raf oncogene is associated with a radiation-resistant human laryngeal cancer. Science 237:1039–1041, 1987.

    PubMed  CAS  Google Scholar 

  217. Azuma M, Furumoto N, et al.: The relation of ras oncogene product p21 expression to clinicopathological status criteria and clinical outcome in squamous cell head and neck cancer. Cancer J 1:375–380, 1987.

    Google Scholar 

  218. Field J, Lamothe A, Spandidos D: Clinical relevance of oncogene expression in head and neck tumors. Anticancer Res 5:221–224, 1985.

    PubMed  Google Scholar 

  219. Field J, Spandidos D: Expression of oncogenes in human tumors with special reference to the head and neck region. J Oral Path 16:97–107, 1986.

    Google Scholar 

  220. Eisbruch A, Blick M, et al.: Analysis of the epidermal growth factor receptor gene in fresh human head and neck tumors. Cancer Res 47:3603–3605, 1987.

    PubMed  CAS  Google Scholar 

  221. Lemoine N, Mayall E, et al.: Activated ras oncogenes in human thyroid cancers. Cancer Res 48:4459–4463, 1988.

    PubMed  CAS  Google Scholar 

  222. Fusco A, Grieco M, et al.: A new oncogene in human thyroid papillary carcinomas and their lymph node metastases. Nature 328:170–172, 1987.

    PubMed  CAS  Google Scholar 

  223. Terrier P, Sheng Z-M, et al.: Structure and expression of c-myc and c-fos proto-oncogenes in thyroid carcinomas. Br J Cancer 57:43–47, 1987.

    Google Scholar 

  224. Lens P, Altena B, Nüsse R: Expression of c-sis and platelet-derived growth factor in in vitro-transformed glioma cells from rat brain tissue transplacentally treated with ethylnitrosourea. Mol Cell Biol 6:3537–3540, 1986.

    PubMed  CAS  Google Scholar 

  225. Garson J, Mclntyre P, Kemshead J: N-myc amplification in malignant astrocytomas. Lancet 2:718–719, 1985.

    PubMed  CAS  Google Scholar 

  226. Libermann T, Nusbaum H, et al.: Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumors of glial origin. Nature 313:144–147, 1985.

    PubMed  CAS  Google Scholar 

  227. Albino A, LeStrange R, et al.: Transforming ras genes from human melanoma: a manifestation of tumor heterogeneity? Nature 308:69–72, 1984.

    PubMed  CAS  Google Scholar 

  228. Padua R, Barrass N, Currie G: A novel transforming gene in a human malignant melanoma cell line. Nature 311:671–673, 1984.

    PubMed  CAS  Google Scholar 

  229. Padua R, Barrass N, Currie G: Activation of N-ras in a human melanoma cell line. Mol Cell Biol 5:582–585, 1985.

    PubMed  CAS  Google Scholar 

  230. Sekiya T, Fushimi M, et al.: Molecular cloning and the total nucleotide sequence of the human c-Ha-ras-1 gene activated in a melanoma from a Japanese patient, Proc Natl Acad Sci USA 81:4771–4775, 1984.

    PubMed  CAS  Google Scholar 

  231. Sekiya T, Fushimi M, Hirohashi S, Tokunaga A: Amplification of activated c-Ha-ras-l in human melanoma. Gann 76:555–558, 1985.

    PubMed  CAS  Google Scholar 

  232. Kuzumaki N, Oda A, et al.: Establishment of four mouse hybridoma cell lines producing monoclonal antibodies reactive with ras oncogene product p21. J Natl Cancer Inst 77: 1273–1279, 1986.

    PubMed  CAS  Google Scholar 

  233. Gerhard D, Dracopoli N, et al.: Evidence against Ha-ras involvement in sporadic and familial melanoma. Nature 325:73–75, 1987.

    PubMed  CAS  Google Scholar 

  234. Sutherland C, Shaw H, et al.: Harvey-ras oncogene restriction fragment alleles in familial melanoma kindreds. Br J Cancer 54:787–790, 1986.

    PubMed  CAS  Google Scholar 

  235. Sawey M, Hood A, Burns F, Garte S: Activation of c-myc and c-K-ras oncogenes in primary rat tumors induced by ionizing radiation. Mol Cell Biol 7:932–935, 1987.

    PubMed  CAS  Google Scholar 

  236. Guerrero I, Villasante A, Corces V, Pellicer A: Activation of a c-Ki-ras oncogene by somatic mutation in mouse lymphomas induced by gamma radiation. Science 225:1159–1162, 1984.

    PubMed  CAS  Google Scholar 

  237. Bizub D, Wood A, Skalka A: Mutagenesis of the Ha-ras oncogene in mouse skin tumors induced by polycyclic aromatic hydrocarbons. Proc Natl Acad Sci USA 83:6048–6052, 1986.

    PubMed  CAS  Google Scholar 

  238. Roop D, Lowy D, et al.: An activated Harvey ras oncogene produces benign tumors in mouse epidermal tissue. Nature 323:822–824, 1986.

    PubMed  CAS  Google Scholar 

  239. Merregaert J, Michiels L, et al.: Oncogene involvement in radiation- and virus-induced mouse osteosarcomas. Leukemia Res 10:915–921, 1986.

    CAS  Google Scholar 

  240. Graves D, Owen A, et al.: Detection of c-sis transcripts and synthesis of PDGF-like proteins by human osteosarcoma cells. Science 226:972–974, 1984.

    PubMed  CAS  Google Scholar 

  241. Cooper C, Park M, et al.: Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature 311:29–33, 1984.

    PubMed  CAS  Google Scholar 

  242. Bogenmann E, Moghadam H, DeClerck Y, Mock A: C-myc amplification and expression in newly established human osteosarcoma cell lines. Cancer Res 47:3808–3814, 1987.

    PubMed  CAS  Google Scholar 

  243. Schon A, Michiels L, et al.: Expression of protooncogenes in murine osteosarcomas. Int J Cancer 38:67–74, 1986.

    PubMed  CAS  Google Scholar 

  244. Marshall C, Hall A, Weiss R: A transforming gene present in human sarcoma cell lines. Nature 299:171–173, 1982.

    PubMed  CAS  Google Scholar 

  245. Hall A, Marshall C, Spurr N, Weiss R: Identification of transforming gene in two human sarcoma cell lines as a new member of the ras gene family located on chromosome 1. Nature 303:396–400, 1983.

    PubMed  CAS  Google Scholar 

  246. Tahira T, Hayashi K, et al.: Structure of the c-Ki-ras gene in a rat fibrosarcoma induced by 1,8-dinitropyrene. Mol Cell Biol 6:1349–1351, 1986.

    PubMed  CAS  Google Scholar 

  247. Knudson A: Mutation and cancer: Statistical study of retinoblastoma. Proc Natl Acad Sci USA 68:820–823, 1971.

    PubMed  Google Scholar 

  248. Potluri V, Helson L, et al.: Chromosomal abnormalities in human retinoblastoma. Cancer 58:663–671, 1986.

    PubMed  CAS  Google Scholar 

  249. Porteous E, Bichmore W, et al.: HRAS1-selected chromosome transfer generates markers that co-localize aniridia and genitourinary dysplasia-associated translocation breakpoints and the Wilms’ tumor gene within band llpl3. Proc Natl Acad Sci USA 84:5355–5359, 1987.

    PubMed  CAS  Google Scholar 

  250. Schroeder W, Chao L-Y, et al.: Nonrandom loss of maternal chromosome 11 alleles in Wilms’ tumors. Am J Hum Genet 40:413–420, 1987.

    PubMed  CAS  Google Scholar 

  251. Weissman B, Saxon P. et al.: Introduction of a normal human chromosome 11 into a Wilms’ tumor cell line controls its tumorigenic expression. Science 236:175–180, 1987.

    PubMed  CAS  Google Scholar 

  252. Nisen A, Zimmermann K, et al.: Enhanced expression of the N-myc gene in Wilms’ tumors. Cancer Res 46:6217–6222, 1986.

    PubMed  CAS  Google Scholar 

  253. Shimizu K, Goldfarb M, Perucho M, Wigler M: Isolation and preliminary characterization of the transforming gene of a human neuroblastoma cell line. Proc Natl Acad Sci USA 80:383–387, 1983.

    PubMed  CAS  Google Scholar 

  254. Schechter A, Hung M, et al.: The neu gene: an erbB-homologous gene distinct from and unlinked to the gene encoding the EGF receptor. Science 229:976–978, 1985.

    PubMed  CAS  Google Scholar 

  255. Tanaka T, Slamon D, et al.: Expression of Ha-ras oncogene products in human neuroblastomas and the significant correlation with a patient’s prognosis. Cancer Res 48:1030–1034, 1988.

    PubMed  CAS  Google Scholar 

  256. Amatruda Y, Sidell N, Ranyard J, Koeffler P: Retinoic acid treatment of human neuroblastoma cells is associated with decreased N-myc expression. Biochem Biophys Res Comm 126:1189–1195, 1985.

    PubMed  CAS  Google Scholar 

  257. Christiansen H, Franke F, et al.: Evolution of tumor cytogenetic aberrations and N-myc concogene amplification in a case of disseminated neuroblastoma. Cancer Genet Cytogenet 26:235–244, 1987.

    PubMed  CAS  Google Scholar 

  258. Christiansen H, Franke F, et al.: (1987). Evolution of tumor cytogenetic aberrations and N-myc oncogene amplification in a case of disseminated neuroblastoma. Cancer Genet Cytogenet 26:235–244, 1987.

    Google Scholar 

  259. Tsuda T, Obara M, et al.: Analysis of N-myc amplification in relation to disease stage and histologic types in human neuroblastomas. Cancer 60:820–826, 1987.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Rochlitz, C.F., Benz, C.C. (1989). Oncogenes in human solid tumors. In: Benz, C., Liu, E. (eds) Oncogenes. Cancer Treatment and Research, vol 47. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1599-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1599-5_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8885-5

  • Online ISBN: 978-1-4613-1599-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics