Oncogenes pp 303-318 | Cite as

Molecular biology of the human retinoblastoma gene

  • Yuen Kai T. Fung
  • Anne T’ang
  • Theresa L. Thompson
Part of the Cancer Treatment and Research book series (CTAR, volume 47)


The notion that genetic damage is the underlying cause of cancer comes from two apparently contradictory lines of evidence on the nature of carcinogenesis. On the one hand, many genomic changes found in malignant cells, such as point mutations, amplification, translocation, and various other rearrangements induced chemically or by retroviruses, have been shown to result in the activation of a set of genes termed oncogenes [1]. These genes, when introduced into target cells either as part of a virus of by DNA transfection can confer neoplastic transformation on the target cells. The existence of these oncogenes suggests that tumorigenicity may be dominant in nature. On the other hand, there is equally compelling evidence to suggest that recessive genomic changes may underlie the neoplastic phenotype of tumor cells.


Leucine Zipper Retinoblastoma Gene Restriction Fragment Length Polymorphism Hereditary Retinoblastoma Retinoblastoma Susceptibility Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bishop JM: The molecular genetics of cancer. Science 235:305–311, 1987.PubMedCrossRefGoogle Scholar
  2. 2.
    Harris H, Miller OJ, Klein G, Worst P, Tachibana T: (Suppression of malignancy by cell fusion. Nature 223:363–368, 1969.PubMedCrossRefGoogle Scholar
  3. 3.
    Wiener, F, Klein G, Harris H: The Analysis of Malignancy by cell fusion. III. Hybrids between diploid fibroblasts and other tumor cells. J Cell Sci 8:681, 1971.PubMedGoogle Scholar
  4. 4.
    Stanbridge EJ: Suppression of malignancy in human cells. Nature 260: 17–20, 1976.PubMedCrossRefGoogle Scholar
  5. 5.
    Yunis JJ, Ramsay N: Retinoblastoma and subband deletion of chromosome 13. Am J Dis Child 132:161, 1978.PubMedGoogle Scholar
  6. 6.
    Saxon PJ, Srivatsan ES, Stanbridge EJ: Introduction of human chromosome 11 via microcell transfer controls tumorigenic expression of HeLa cells. EMBO J 5:3461–3466, 1986.PubMedGoogle Scholar
  7. 7.
    Weissman BE, Saxon PJ, Pasquale SR, Jones GR, Geiser AG, Stanbridge EJ: Introduction of a normal human chromosome 11 into a Wilms’ tumor cell line controls its tumorigenic expression. Science 236:175–180, 1987.PubMedCrossRefGoogle Scholar
  8. 8.
    Knudson, AG: Mutation and cancer: Statistical study of retinoblastoma. Proc Natl Acad Sci USA 68:820–823, 1971.PubMedCrossRefGoogle Scholar
  9. 9.
    Ward P, Packman S, Loughman W, Sparkes, M, Sparkes R, McMahon A, Gregory T, Ablin A: Location of the retinoblastoma susceptibility gene(s) and the human esterase D locus. J Med Genet 21:92, 1984.PubMedCrossRefGoogle Scholar
  10. 10.
    Sparkes RS, Murphree, AL, Lingua RW, Sparkes, MC, Field LL, Funderburk, SJ, Benedict WF: Gene for hereditary retinoblastoma assigned to human chromosome 13 by linkage to esterase D. Science 219;971, 1983.PubMedCrossRefGoogle Scholar
  11. 11.
    Connolly MJ, Payne RG, Johnson G, Gallie BL, Allerdice PW, Marshall, WH, Lawton RD: Familial, EsD-linked, retinoblastoma with reduced penetrance and variable expressivity. Hum Genet 65:122, 1983.PubMedCrossRefGoogle Scholar
  12. 12.
    Sparkes RS, Sparkes MC, Wilson MG, Towner JW, Benedict W, Murphree AL, Yunis JJ: Regional assignment of genes for human esterase D and retinoblastoma to chromosome band 13q14. Science 208:1042, 1980.PubMedCrossRefGoogle Scholar
  13. 13.
    Cavenee WK, Dryja TP, Philips RA, Benedict WF, Godbout R, Gallie BL, Murphree AL, Strong LC, White RL: Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature (London) 305:779–784, 1983.CrossRefGoogle Scholar
  14. 14.
    Koufos A, Hansen MF, Copeland NG, Jenkins NA, Lampkin BC, and Cavenee WK: Loss of heterozygosity in three embryonal tumours suggests a common pathogenetic mechanism. Nature 316:330–334, 1985.PubMedCrossRefGoogle Scholar
  15. 15.
    Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, Nakamura Y, White, R, Smits AMM, Bos JL: Genetic alterations during colorectal-tumor development. N Engl J Med 319:525, 1988.PubMedCrossRefGoogle Scholar
  16. 16.
    Mechler BM, McGinnis W, Gehring WJ: Molecular cloning of lethal (2) giant larvae, a recessive oncogene of Drosophila melanogaster. EMBO J 4:1551–1557, 1985.PubMedGoogle Scholar
  17. 17.
    Friend SH, Bernards R, Rogelj S, Weinberg RA, Rapaport JM, Albert DM, Dryja TP: A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature (London) 323:643–646, 1986.CrossRefGoogle Scholar
  18. 18.
    Fung YK, Murphree AL, T’Ang A, Qian J, Hinrichs SH, Benedict WF: Structural evidence for the authenticity of the human retinoblastoma gene. Science 236:1657–1661, 1987.PubMedCrossRefGoogle Scholar
  19. 19.
    Hartley AL, Birch JM, Marsden HB, Harris M: Breast cancer risk in mothers of children with osteosarcoma and chondrosarcoma. Br J Cancer 54:819, 1986.PubMedCrossRefGoogle Scholar
  20. 20.
    Fung YK, T’ang A, Thompson TL: Findings reported at the American Academy of Ophthalmology, New Orleans, November 12, 1986.Google Scholar
  21. 21.
    Lee WH, Bookstein R, Hong F, Young LJ, Shew JY, Lee E: Human retinoblastoma susceptibility gene: Cloning, identification and sequence. Science 235:1394–1399, 1987.PubMedCrossRefGoogle Scholar
  22. 22.
    Tang A, Wu KJ, Liu WY, Hashimoto T, Shi XH, Mihara K, Takahashi R, Zhang FH, Chen YY, Du C, Qian J, Lin YG, Murphree AL, Qiu WR, Benedict WF, Thompson T, Fung YK: Genomic organization of the human retinoblastoma gene. Oncogene, in press.Google Scholar
  23. 23.
    Abramson DH, Ellsworth RM, Kitchin FD, Tung G: Second nonocular tumors in retinoblastoma survivors. Are they radiation induced? Ophthalmol 91:1351, 1984.Google Scholar
  24. 24.
    Schimke RN, Lowman JT, Cowan GAB: Retinoblastoma and osteogenic sarcoma in siblings. Cancer 34:2077, 1974.PubMedCrossRefGoogle Scholar
  25. 25.
    Gordon H: Family studies in retinoblastoma. Birth Defects Orig Art Ser 10(10): 185, 1974.PubMedGoogle Scholar
  26. 26.
    Hansen MF, Koufos A, Gallie BL, Phillips RA, Fadstad O, Brogger A, Gedde-Dahl T, Cavenee WK: Tumor suppressors: Recessive mutations that lead to cancer. Proc Natl Acad Sci USA 82:6216–6220, 1985.PubMedCrossRefGoogle Scholar
  27. 27.
    Dryja TP, Rapaport JM, Epstein J, Goorin AM, Weichselbaum R, Koufos A, Cavenee WK: Chromosome 13 homozygosity in osteosarcoma without retinoblastoma. Am J Hum Genet 38:59–66, 1986.PubMedGoogle Scholar
  28. 28.
    Melton DW, Konecki DS, Brennard J, Caskey CT: Structure, expression, and mutation of the hypoxanthine phosphoribosyltransferase gene. Proc Natl Acad Sci USA 81:2147–2151, 1984.PubMedCrossRefGoogle Scholar
  29. 29.
    Ishii S, Xu YH, Stratton RH, Roe BA, Merlino GT, Pastan I: Characterization and sequence of the promoter region of the human epidermal growth factor receptor gene Proc Natl Acad Sci USA 82:4920–4924.Google Scholar
  30. 30.
    Friend SH, Horowitz JM, Gerber MR, Wang XF, Bogenmann E, Li FP, Weinberg RA: Deletions of a DNA sequence in retinoblastomas and mesenchymal tumors: Organization of the sequence and its encoded protein. Proc Natl Acad Sci USA 84:9059–9063.Google Scholar
  31. 31.
    T’Ang A, Varley JM, Chakraborty S, Murphree AL, Fung YK: Structural rearrangement of the retinoblastoma gene in human breast carcinoma. Science 242:263–266, 1988.PubMedCrossRefGoogle Scholar
  32. 32.
    Harbour JW, Lai SL, Whang-Peng J, Gazdar AF, Minna JD, Kaye FJ: Abnormalities in structure and expression of the human retinoblastoma gene in SCLC. Science 241:353–357, 1988.PubMedCrossRefGoogle Scholar
  33. 33.
    Yokota, Akiyama T, Fung YK, Benedict WF, Namba Y, Hanaoka M, Wada M, Terasaki T, Shimosato Y, Sugimura T, Terada M: Altered expression of the retinoblastoma (RB) gene in small-cell carcinoma of the lung. Oncogene 3:471–475, 1988.PubMedGoogle Scholar
  34. 34.
    T’Ang A, et al.: Unpublished, 1989.Google Scholar
  35. 35.
    Ishii S, Merlino GT, Pastan I: Promotor region of the human Harvey ras proto-oncogene: Similarity to the EGF receptor proto-oncogene promotor. Science 230:1378–1381, 1985.PubMedCrossRefGoogle Scholar
  36. 36.
    Holfman, EK, Trusko SP, Freeman N, George D: Structural and functional characterization of the promotor region of the mouse c-Ki-ras gene. Mol Cell Biol 7:2592–2596, 1987.Google Scholar
  37. 37.
    Whyte P, Buchkovich KJ, Horowitz JM, Friend SH, Raybuck M, Weinberg RA, Harlow E: Association between an oncogene and an anti-oncogene: the adenovirus EIA proteins bind to the retinoblastoma gene product. Nature 334:124–129, 1988.PubMedCrossRefGoogle Scholar
  38. 38.
    Decaprio JA, Ludlow JW, Figge J, Shew JY, Huang CM, Lee WH, Marsilio E, Paucha E, Livingston DM: SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 54:275–283, 1988.PubMedCrossRefGoogle Scholar
  39. 39.
    Lee WH, Shew JY, Hong FD, Sery TW, Donoso LA, Young LJ, Bookstein R, Lee EYH: The retinoblastoma susceptibility gene encodes a nuclear phosphoprotein associated with DNA binding activity. Nature 329:642–645, 1987.PubMedCrossRefGoogle Scholar
  40. 40.
    Landschulz WH, Johnson PF, McKnight SL: The leucine zipper: A hypothetical structure common to a new class of DNA binding Proteins. Science 240:1759–1764, 1988.PubMedCrossRefGoogle Scholar
  41. 41.
    Yee S, Branton PE: Detection of cellular proteins associated with human adenovirus type 5 early region 1A polypeptides. Virology 147:142–153, 1985.PubMedCrossRefGoogle Scholar
  42. 42.
    Harlow E, Whyte P, Franza BR, Schley C: Association of adenovirus early region 1A Proteins with cellular polypeptides. Mol Cell Biol 6:1579–1589, 1986.PubMedGoogle Scholar
  43. 43.
    Moran E: A region of SV40 large T-antigen can substitute for a transforming domain of the adenovirus EIA products. Nature 334:168–170, 1988.PubMedCrossRefGoogle Scholar
  44. 44.
    Figge J, Webster T, Smith TF, Paucha E: Prediction of similar transforming regions in simian virus 40 large T, adenovirus EIA, and myc oncoproteins. J Virol 62:1814–1818, 1988.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Yuen Kai T. Fung
  • Anne T’ang
  • Theresa L. Thompson

There are no affiliations available

Personalised recommendations