Oncogenes pp 285-302 | Cite as

The human DNA tumor viruses: Human papilloma virus and Epstein—Barr virus

  • Nancy Raab-Traub
Part of the Cancer Treatment and Research book series (CTAR, volume 47)


Viruses and cancer

Many DNA viruses are able to transform cells in culture or induce tumors in experimental animals. However, proving a causal association between infection with a specific human virus and the development of cancer has been difficult because most of the viruses are ubiquitous infectious agents, whereas a malignancy is apparently a rare outcome of infection that develops many years after initial infection. Moreover, neoplasia develops during latent or persistent infections with the viruses, making it difficult to determine whether viral functions are critical to the development of cancer or essential to the latent state.


Cervical Carcinoma Cell Line Latent Infection Membrane Protein Bovine Papilloma Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    DeCaprio JA, Ludlow JW, Figge J, Shew JY, Huang CM, Lee WH, Marsilio E, Paucha E, Livingston DM: SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma gene. Cell 54:275–283, 1988.PubMedCrossRefGoogle Scholar
  2. 2.
    Gissman L, Wolnik L, Ikenberg H, Koldovsky U, Schnurch HG, zur Hausen H: Human papillomavirus types 6 and 11 sequences in genital and laryngeal papillomas and in some cervical cancers. Proc Natl Acad Sci USA 80:560–563, 1983.CrossRefGoogle Scholar
  3. 3.
    Boshart M, Gissman L, Ikenberg H, zur Hausen H: A new type of papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. EMBO J 3:1151–1157, 1984.PubMedGoogle Scholar
  4. 4.
    Crum CP, Mitao M, Levine RU, Silverstein SJ: Cervical papillomavirus segregate within morphologically distinct precancerous lesions. J Virol 54:675–681, 1985.PubMedGoogle Scholar
  5. 5.
    Graham S, Rawls W, Swanson M, McCurtis J: Sex partners and herpes simplex virus type 2 in the epidemiology of cancer of the cervix. Am J Epidemiology 115:729–735, 1982.Google Scholar
  6. 6.
    zur Hausen H: Human genital cancer: synergism between two viruses or synergism between a virus infection and initiating events? Lancet: 1370–1372, 1982.Google Scholar
  7. 7.
    Huang ES, Davis MG, Baskar JF, Huong SM: Molecular epidemiology and oncogenicity of human cytomegalovirus. In: Harris CC (ed): Biochemical and Molecular Epidemiology of Cancer. New York, Alan R. Liss, 1986, pp 323–343.Google Scholar
  8. 8.
    Giraldo G, Beth E, Huang ES: Kaposi’s sarcoma and its relationship to cytomegalovirus (CMV) III. CMV DNA and CMV early antigens in Kaposi’s sarcoma. Int J Cancer 26: 23–29, 1980.PubMedCrossRefGoogle Scholar
  9. 9.
    Henle G, Henle W, Diehl V: Relation of Burkitt tumor associated herpes-type virus to infectious mononucleosis. Proc Natl Acad Sci USA 59:94–101, 1968.PubMedCrossRefGoogle Scholar
  10. 10.
    Hanto DW, Gajl-Peczalska KJ, Frizzera G, Arthur DC, Balfour HH, McClain K, Simmons RL, Najerian JS: Epstein-Barr virus (EBV) induced polyclonal and monoclonal B-cell lymphoproliferative disease occurring after renal transplantation: clinical, pathologic, and virologic findings and implications for therapy. Ann Surg 198:356–369, 1983.PubMedCrossRefGoogle Scholar
  11. 11.
    Nonoyama M, Pagano JS: Homology between Epstein-Barr virus DNA and viral DNA from Burkitt’s lymphoma and nasopharyngeal carcinoma determined by DNA-DNA reassociation kinetics. Nature 242:44–47, 1973.PubMedCrossRefGoogle Scholar
  12. 12.
    Raab-Traub N, Flynn K, Pearson G, Huang A, Levine P, Lanier A, Pagano JS: The differentiated form of nasopharyngeal carcinoma contains Epstein-Barr virus DNA. Int J Cancer 39:25–29, 1987.PubMedCrossRefGoogle Scholar
  13. 13.
    Pope J, Home M, Scott W: Transformation of fetal human leukocytes in vitro by filtrates of a human leukemic cell line containing herpes-like virus. Int J Cancer 3:857–866, 1968.PubMedCrossRefGoogle Scholar
  14. 14.
    Dambaugh T, Hennessy K, Fennewald S, Kieff E: The virus genome and its expression in latent infection. In: Epstein MA, Achong, BG (eds): The Epstein-Barr Virus: Recent Advances. London, William Heinemann Medical Books LTD, 1986, pp 13–45.Google Scholar
  15. 15.
    Yates JL, Warren N, Sugden B: Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. Nature 313:812–815, 1985.PubMedCrossRefGoogle Scholar
  16. 16.
    Wang D, Liebowitz D, Kieff E: An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell 43:831–840, 1985.PubMedCrossRefGoogle Scholar
  17. 17.
    Wang F, Gregory C, Rowe M, Wang D, Rickinson A, Kieff E: Epstein-Barr virus nuclear protein 2 specifically induces high surface expression of the B cell activation antigen, CD23. Proc Natl Acad Sci USA 84:3452–3456, 1987.PubMedCrossRefGoogle Scholar
  18. 18.
    Beasley R, Lin C, Huang L: Hepatocellular carcinoma and hepatitis B virus: a prospective study of 22, 707 men in Taiwan. Lancet 2:1129, 1981.PubMedCrossRefGoogle Scholar
  19. 19.
    Tiollais P, Pourcel C, Dejean A: The hepatitis B virus. Nature 317:489–495, 1985.PubMedCrossRefGoogle Scholar
  20. 20.
    Williams MG, Howardson AF, Almeida JD: Morphologic characterization of the virus of the human common wart (verruca vulgaris). Nature 189:895–897, 1961.PubMedCrossRefGoogle Scholar
  21. 21.
    Zoler ML: Human papilloma virus linked to cervical (and other) cancers. JAMA 249: 2997–2999, 1983.PubMedCrossRefGoogle Scholar
  22. 22.
    Kessler H: Venereal factors in human cervical cancer: evidence from marital clusters. Cancer 39:1912–1919, 1977.PubMedCrossRefGoogle Scholar
  23. 23.
    Kessler H: Human cervical cancer as a venereal disease. Cancer Res 36:783–791, 1976.PubMedGoogle Scholar
  24. 24.
    Richart RM: Cervical intraepithelial neoplasia. In: Sommers, SC (ed): Pathology Annual New York, Appleton Century Crofts, 1973, pp 301–328.Google Scholar
  25. 25.
    Winkler B, Crum CP, Fujii T: Koilocytic lesions of the cervix: the relationship of mitotic abnormalities to nuclear DNA content. Cancer 53:1081–1087, 1987.CrossRefGoogle Scholar
  26. 26.
    Strauss MJ, Shaw EW, Bunting H, Melnick JL: Crystalline virus-like particles from skin papilloma characterised by intramuscular inclusion bodies. Proc Soc Exp Biol Med 72: 46–51, 1949.PubMedGoogle Scholar
  27. 27.
    Nuovo G, Crum CP, Silverstein S: Papillomavirus infection of the uterine cervix. Micro Path 3:71–78, 1987.CrossRefGoogle Scholar
  28. 28.
    Faras AJ, Kryzysek RA, Ostrow RS, Watts SL, Smith DM, Anderson DI, Quick CA, Pass F: Genetic variation among papilloma viruses. Ann NY Acad Sci 354:60–79, 1980.PubMedCrossRefGoogle Scholar
  29. 29.
    Durst M, Gissman L, Ikenberg H, zur Hausen H: A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proc Natl Acad Sci USA 80:3812–3815, 1983.PubMedCrossRefGoogle Scholar
  30. 30.
    Matsukura T, Kanda T, Furuno A, Yoshikawa H, Kawana T, Yoshike K: Cloning of monomeric human papillomavirus type 16 integrated within cell DNA from a cervical carcinoma. J Virol 58:979–982, 1986.PubMedGoogle Scholar
  31. 31.
    Phelps WC, Howley PM: Transcriptional transactivation by the human papillomavirus type 16 E2 gene product. J Virol 61:1630–1638, 1987.PubMedGoogle Scholar
  32. 32.
    Cripe TP, Haugen TH, Turk, OP, Tabatabai F, Schmid, PG, Durst M, Gissman L, Roman A, Turek LP: Transcriptional regulation of the human papillomavirus-16 E6-E7 promoter by a keratinocyte-dependent enhancer and by viral E2 transactivator and repressor gene products: implications for cervical carcinogenesis. EMBO J 6:3745–3753, 1987.PubMedGoogle Scholar
  33. 33.
    Gloss B, Bernard HU, Seedorf K, Kiock G: The upstream regulatory region of the human papilloma virus-16 contains an E2 protein-independent enhancer which is specific for cervical carcinoma cells and regulated by glucocorticoid hormones. EMBO J 6:3735–3743, 1987.PubMedGoogle Scholar
  34. 34.
    Baker CC, Phelps WC, Lindgren V, Braun MJ, Gonda MA, Howley PM: Structural and transcriptional analysis of human papillomavirus type 16 sequences in cervical carcinoma cell lines. J Virol 61:962–971, 1987.PubMedGoogle Scholar
  35. 35.
    Smotkin D, Wettstein FO: Transcription of human papillomavirus 16 early genes in a cervical cancer and a cancer-derived cell line and identification of the E7 protein. Proc Natl Acad Sci USA 83:4680–4684, 1987.CrossRefGoogle Scholar
  36. 36.
    Schneider-Gadicke A, Schwarz E: Different human cervical carcinoma cell lines show similar transcription patterns of human papillomavirus type 18 early genes. EMBO J 6: 2285–2292, 1986.Google Scholar
  37. 37.
    Schwartz E, Freese UK, Gissman L, Mayer W, Roggenbuck B, Stemlau A, zur Hausen H: Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature 314:111–113, 1985.CrossRefGoogle Scholar
  38. 38.
    Howley P, Schlegel R: Papillomavirus transformation. In: Salzman NP, Howley PM (eds): The Papillomaviruses. New York, Plenum Press, 1987.Google Scholar
  39. 39.
    Yasumoto S, Burkhardt AL, Doniger J, DiPaolo JA: Human papillomvirus type 16 DNA-induced malignant transformation of NIH 3T3 cells. J Virol 57:572–577, 1986.PubMedGoogle Scholar
  40. 40.
    Bedell MA, Jones KH, Laimins LA: The E6–E7 region of human papillomavirus type 18 is sufficient for transformation of NIH 3T3 and Rat-1 cells. J Virol 61:3635–3640, 1987.PubMedGoogle Scholar
  41. 41.
    Matlaschewski G, Schneider J, Banks L, Jones N, Murray A, Crawford L: Human papillomavirus type 16 DNA cooperates with activated ras in transforming primary cells. EMBO J 6:1741–1746, 1987.Google Scholar
  42. 42.
    Phelps WC, Lee CL, Munger K, Howley PM: The human papillomavirus type 16 E7 gene encodes transactivation and transformation functions similar those of adenovirus E1A. Cell 53:539–547, 1988.PubMedCrossRefGoogle Scholar
  43. 43.
    Buchkovich KJ, Whyte P, Dyson N, Horowitz JM, Friend SH, Raybuck M, Weinberg RA, Harlow E: The transforming proteins of three DNA tumor viruses interact with the retinoblastoma gene product. Abstract #1. Cold Spring Harbor Meeting: SV40, Polyoma, and Adenoviruses. August 10–14, 1988.Google Scholar
  44. 44.
    Epstein MA, Achong BG, Barr YM: Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet 1:702–703, 1964.PubMedCrossRefGoogle Scholar
  45. 45.
    Pagano JS, Huang ES, Peine P: Absence of Epstein-Barr viral DNA in Burkitt’s lymphoma. N Engl J Med 289:1395–1399, 1973.PubMedCrossRefGoogle Scholar
  46. 46.
    Henle W, Henle G: Seroepidemiology of the Epstein-Barr virus. In: Epstein MA, Achong BG (eds): The Epstein-Barr Virus, Berlin, Springer-Verlag, 1979, pp 62–78.Google Scholar
  47. 47.
    Erikson J, Finan J, Croce CM: Translocation of immunoglobulin VH genes in Burkitt’s lymphoma. Proc Natl Acad Sci USA 79:5611–5615, 1982.PubMedCrossRefGoogle Scholar
  48. 48.
    Pelicci PG, Knowles DM, Magrath I, Dalla-Favaera R: Chromosomal breakpoints and structural alterations of the c-myc locus differ in endemic and sporadic forms of Burkitt lymphoma. Proc Natl Acad Sci USA 83:2984–2988, 1986.PubMedCrossRefGoogle Scholar
  49. 49.
    Zajac-Kaye M, Gelman, E, Levens, D: A point mutation in the c-myc locus of a Burkitt’s lymphoma abolishes binding of a nuclear protein. Science 240:1776–1780, 1988.PubMedCrossRefGoogle Scholar
  50. 50.
    Purtilo DT: Hypothesis: pathogenesis and phenotoype of an X-linked lymphoproliferative syndrome. Lancet 2:882–885, 1976.PubMedCrossRefGoogle Scholar
  51. 51.
    Pelicci PG, Knowles DM, Arlin ZA, Wieczorek R, Lciw P, Dina D, Basilico C, Dalla-Favera R: Multiple monoclonal B-cell expansions and c-myc oncogene rearrangements in acquired immune deficiency syndrome-related lymphoproliferative disorders. Implications for lymphomagenesis. J Exp Med 164:2049–2058, 1986.PubMedCrossRefGoogle Scholar
  52. 52.
    Desgranges C, Wolf H, de The’ G, Shanmugaratnam K, Ellouz R, Cammoun N, Klein G, zur Hausen H: Nasopharyngeal carcinoma X. Presence of Epstein-Barr virus genomes in epithelial cells of tumors from high and medium risk areas. Int J Cancer 16:7–15, 1975.PubMedCrossRefGoogle Scholar
  53. 53.
    Saemundsen AK, Albeck H, Hansen JPH: Epstein-Barr virus nasopharyngeal and salivary gland carcinomas in Greenland Eskimos. Br J Cancer 46:721–728, 1982.PubMedCrossRefGoogle Scholar
  54. 54.
    Brichacek B, Hirsch J, Sibl O, Vilikusova E, Vonka V: Association of some supraglottic laryngeal caracinomas with EBV virus. Int J Cancer 32:193–197, 1983.PubMedCrossRefGoogle Scholar
  55. 55.
    Baer R, Bankier A, Biggin M, Dienenger P, Farrell P, Gibson T, Hatfull G, Hudson G, Satchwell S, Sequin C, Tuffnell P, Barrell B: DNA sequence and expression of the B95–8 Epstein-Barr virus. Nature 310:207–211, 1984.PubMedCrossRefGoogle Scholar
  56. 56.
    Dambaugh T, Beisel C, Hummel M, King W, Fennewald S, Cheung A, Heller M, Raab-Traub N, Kieff E: Epstein-Barr virus (B95–8) DNA. VII. Molecular cloning and detailed mapping of EBV (B95–8) DNA. Proc Natl Acad Sci USA 77:2999–3003, 1980.PubMedCrossRefGoogle Scholar
  57. 57.
    Raab-Traub N, Flynn K: The structure of the termini of the Epstein-Barr virus as a marker of clonal cellular proliferation. Cell 47:883–889, 1986.PubMedCrossRefGoogle Scholar
  58. 58.
    Greenspan JS, Greenspan D, Lennette E, Abrams DI, Conant MA, Petersen V, Freese VK: Replication of Epstein-Barr virus within the epithelial cells of oral ‘hairy’ leukoplakia an AIDs associated lesion. N Engl J Med 313:1564–1571, 1985.PubMedCrossRefGoogle Scholar
  59. 59.
    Matsuo T, Heller, M, Petti L, O’Shiro E, Kieff E: Persistence of the entire Epstein-Barr virus genome integrated into human lymphocyte DNA. Science 226:1322–1325, 1984.PubMedCrossRefGoogle Scholar
  60. 60.
    Sample J, Hummel M, Braun D, Birkenbach M, Kieff E: Nucleotide sequence of messenger RNAs encoding Epstein-Barr virus nuclear proteins reveals a probable transcriptional initiation site. Proc Natl Acad Sci USA 83:6096–6100, 1986.CrossRefGoogle Scholar
  61. 61.
    Rabson M, Gradoville L, Heston L, Miller G: Non-immortalizing P3JHR-1 Epstein-Barr virus: a deletion mutant of its transforming parent, Jijoye. J Virol 44:834–844, 1982.PubMedGoogle Scholar
  62. 62.
    Skare J, Farley J, Strominger JL, Fresen K, Cho MS, zur Hausen H: Transformation by Epstein-Barr virus requires DNA sequences in the region of BamHI fragments Y and H. J Virol 55:286–297, 1985.PubMedGoogle Scholar
  63. 63.
    Rowe D, Farrell P, Miller G: Novel nuclear antigens recognized by human sera in lymphocytes latently infected with Epstein-Barr virus. Virology 156:153–162, 1987.PubMedCrossRefGoogle Scholar
  64. 64.
    Dambaugh T, Hennessey K, Chamnankit L, Kieff E: U2 region of Epstein-Barr virus DNA may encode Epstein-Barr nuclear antigen 2. Proc Natl Acad Sci USA 81:7632–7636, 1984.PubMedCrossRefGoogle Scholar
  65. 65.
    Laux G, Perricaudet M, Farrell PJ: A spliced Epstein-Barr virus gene expressed in immortalized lymphocytes is created by circularization of the linear viral genome. EMBO J 7:769–774, 1988.PubMedGoogle Scholar
  66. 66.
    Fennewald S, van Santen V, Kieff E: Nucleotide sequence of an mRNA transcribed in latent growth-transforming virus infection indicates that it may encode a membrane protein. J Virol 51:411–419, 1984.PubMedGoogle Scholar
  67. 67.
    Wang D, Liebowitz D, Wang F, Gregory C, Rickinson A, Larson R, Springer T, Kieff E: Epstein-Barr virus latent infection membrane protein (LMP) alters lymphocyte morphology, adhesion, and growth: deletion of the amino terminus abolishes activity. J Virol 62: 4173–4184, 1988.PubMedGoogle Scholar
  68. 68.
    Young L, Dawson C, Clark D, Rupani H, Busson P, Tursz T, Johnson A, Rickinson A: Epstein-Barr virus gene expression in nasopharyngeal carcinoma. J Gen Virol 69:1051–1065, 1988.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Nancy Raab-Traub

There are no affiliations available

Personalised recommendations