The Role of Nuclear Cardiology in the Assessment of Myocardial Infarction and the Evaluation of Early Interventions

  • David S. Kayden
  • Frans J. TH. Wackers
  • Barry L. Zaret
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 97)

Abstract

Management of patients with infarction has now become actively interventional, with strategies directed at early reperfusion of occluded vessels in the hope of salvaging ischemic myocardium. In this light, the role of nuclear cardiology in the past ten years has expanded from its use primarily as a diagnostic tool for coronary artery disease to that of defining and quantifying functional characteristics of myocardium in patients with acute and stable coronary artery disease. Myocardial infarction can be divided functionally into two phases: the acute phase of infarction when myocardial damage is evolving, and the convalescent phase, after the completed infarct. In each phase, there are several questions that require immediate answers; in both phases, nuclear techniques can play an important role in providing these answers. Acutely, one wishes to know how much myocardium remains at risk, how much is permanently damaged, how much potentially reversibly damaged myocardium is present, the level of ventricular function, the patient’s prognosis, and the efficacy of any intervention employed in the early hours of the infarct. In the convalescent phase, one wishes to define and determine myocardial functional reserve, the presence of ischemia, and the future risk and prognosis. Based on these data, an appropriate management strategy can be developed.

Keywords

Ischemia Iodine Glutamine Cardiomyopathy Creatine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kostuk WJ, Ehsanri AL, Karliner JS, Ashburn WL, Peterson KL, Ross J, Sobel BE: Left ventricular performance after myocardial infarction assessed by radioisotope angiography. Circulation 47: 242, 1983.Google Scholar
  2. 2.
    Rigo P, Murry M, Strauss HW, Taylor D, Kelly D, Weisfeldt M, Pitt B: Left ventricular function in acute myocardial infarction evaluated by gated scintiphotogrphy. Circulation 50: 678, 1974.PubMedGoogle Scholar
  3. 3.
    Shah PK, Pichler M, Berman DS, Singh BN, Swan HJ: Left ventricular ejection fraction determined by radionuclide ventriculography in early stages of first transmural myocardial infarction: Relation to short term prognosis. Am J Cardiol 45: 542, 1980.PubMedGoogle Scholar
  4. 4.
    Schelben HR, Henning H, Ashburn WL, Verba JW, Karliner JS, O’Rourke RA: Serial measurements of left ventricular ejection fraction by radionuclide angiography early and late after myocardial infarction. Am J Cardiol 38: 407, 1976.Google Scholar
  5. 5.
    Nemerovski M, Shah PK, Pichler M, Berman DS, Shellock F, Swan HJC: Radionuclide assessment of sequential changes in left and right ventricular function following first acute transmural myocardial infarction. Am Heart J 104: 709, 1982.PubMedGoogle Scholar
  6. 6.
    Sanford CF, Corbett J, Nicod P, Curry GL, Lewis SE, Dehmer GJ, Anderson A, Mores B, Willerson JT: Value of radionuclide ventriculography in the immediate characterization of patients with acute myocardial infarction. Am J Cardiol 49: 637, 1982.PubMedGoogle Scholar
  7. 7.
    The Multicenter Postinfarction Research Group: Risk stratification and survival after myocardial infarction. N Engl J Med 309: 331, 1983.Google Scholar
  8. 8.
    Braunwald E: The path to myocardial salvage by thrombolytic therapy. Circulation 76(part II): II-2, 1987.Google Scholar
  9. 9.
    Ritchie JL, Hallstrom AP, Troubaugh GB, Caldwell JH, Cobb LA: Out-of-hospital sudden coronay death: Rest and exercise radionuclide left ventricular function in survivors. Am J Cardiol 55: 645, 1985.PubMedGoogle Scholar
  10. 10.
    Wackers FJ, Berger HJ, Weinberg MA, Zaret BL: Spontaneous changes in left ventricular function over the first 24 hours of acute myocardial infarction: Implications for evaluating early therapeutic interventions. Circulation 66: 748, 1982.PubMedGoogle Scholar
  11. 11.
    Ong L, Reiser P, Coromilas J, Scherr L, Morrison J: Left ventricular function and rapid release of creatine kinase MB in acute myocardial infarction: Evidence for spontaneous reperfusion. N Engl J Med 309: 1, 1983.PubMedGoogle Scholar
  12. 12.
    Khaja F, Walton JA, Brymer JF, Lo E, Osterberger L, O’Neill WW, Colfertt T, Weiss R, Lee T, Kurian T, Goldberg AD, Pitt B, Goldstein S: Intracoronary fibrinolytic therapy in acute myocardial infarction: Report of a prospective randomized trial. N Engl J Med 308: 1305, 1983.PubMedGoogle Scholar
  13. 13.
    Lieboff RH, Katz RJ, Wasserman AG, Bren GB, Schwartz H, Varghese PJ, Ross AM: A randomized, angiographically controlled trial of intracoronary streptokinase in acute myocardial infarction. Am J Cardiol 53: 404, 1984.Google Scholar
  14. 14.
    Kennedy JW, Ritchie JL, Davis KB, Fritz JK: Western Washington randomized trial of intracoronary streptokinase in acute myocardial infarction. N Engl J Med 309: 1477, 1983.PubMedGoogle Scholar
  15. 15.
    Anderson JL, Marshall HW, Bray BE, Lutz JR, Frederick PR, Yanowitz FG, Datz FL, Klausner SC, Hagan AD: A randomized trial of intracoronary streptokinase in the treatment of acute myocardial infarction. N Engl J Med 308: 1312, 1983.PubMedGoogle Scholar
  16. 16.
    Koren G, Weiss AT, Hasin Y, Appelbaum D, Welber S, Rozenman Y, Lotan C, Mosseri M, Sapoznikov D, Luria MH, Gotsman MS: Prevention of myocardial damage in acute myocardial ischemia by early treatment with intravenous streptokinase. N Engl J Med 313: 1384, 1985.PubMedGoogle Scholar
  17. 17.
    Raizner AE, Tortoledo FA, Verani MS, Van Reet RE, Young JB, Rickman FG, Cashion WR, Samuels DA, Pratt CM, Attar M, Rubin HS, Lewis JM, Klein MS, Roberts R: Intracoronary thrombolytic therapy in acute myocardial infarction: A prospective, rando-mized, controlled trial. Am J Cardiol 55: 301, 1985.PubMedGoogle Scholar
  18. 18.
    Stack RS, Phillips HR III, Grierson DS, Behar VS, Kong Y, Peter RH, Swain JL, Greenfield JC Jr: Functional improvement of jeopardized myocardium following intracoronary strep-tokinase infusion in acute myocardial infarction. J Clin Invest 72: 84, 1983.PubMedGoogle Scholar
  19. 19.
    Serruys PW, Simoons ML, Suryapranata H, Vermeer F, Wijns W, van den Brand, M, Bar F, Zwaan C, Krauss XH, Remme WJ, Res J, Verheugt FWA, van Domburg R, Lubsen J, Hugenholtz PG: Preservation of global and regional left ventricular function after early thrombolysis in acute myocardial infarction. J Am Coll Cardiol 7: 729, 1986.PubMedGoogle Scholar
  20. 20.
    Mathey DG, Sheehan FH, Schofer J, Bleifeld W, Dodge HT: Time-dependency of myocardial salvage after thrombolysis. Circulation 72(Suppl III): III-419, 1985.Google Scholar
  21. 21.
    McKenzie W, Duncan J, Kayden D, Fetterman R, Greene R, Sheehan F, Bolson E, Dodge H, Canner P, Wackers FJ, Zaret BL: Circulation 72(Suppl III): III-480, 1985.Google Scholar
  22. 22.
    Duncan JS, Fetterman RC, McKenzie W, Greene R, Wackers FJ, Zaret B, Sheehan F, Bolson E, Dodge H: Computers in Cardiology. In press.Google Scholar
  23. 23.
    Wackers FJ, Kayden DS, Zaret BL, TIMI Investigators: Quantitative radionuclide assessment of regional ventricular function after thrombolysis — Phase I TIMI Trial. Circulation 76(Part II): IV-485, 1987.Google Scholar
  24. 24.
    O’Neill, WO, Timmis GC, Bourdillon PD, Lai P, Ganghadarhan V, Walton J, Ramos R, Laufer N, Gordon S, Schork A, Pitt B: A prospective randomized clinical trial of intracoronary streptokinase versus coronary angioplasty for acute myocardial infarction. N Engl J Med 314: 812, 1986.PubMedGoogle Scholar
  25. 25.
    Topol EJ, Weiss JL, Brinker JA, Brin KP, Gottlieb SO, Becker LC, Bulkley B, Chandra N, Flaherty JT, Gerstenblith G, Gottlieb SH, Guerci AD, Ouyang P, Llewellyn MP, Weisfeldt ML, Shapiro EP: Regional wall motion improvement after coronary thrombolysis with recombinant tissue plasminogen activator: Importance of coronary angioplasty. J Am Coll Cardiol 6: 426, 1985.PubMedGoogle Scholar
  26. 26.
    Topol EJ, Califf RM, Kereiakes DJ, George BS: Thrombolysis and angioplasty in myocardial infarction (TAMI) trial. J Am Coll Cardiol 10: 65B, 1987.Google Scholar
  27. 27.
    Topol EJ, O’Neill WW, Langburd AB, Walton JA, Bourdillon PV, Bates ER, Grines CL, Schork AM, Kline E, Pitt B: A randomized, placebo-controlled trial of intravenous recom-binant tissue-type plasminogen activator and emergency coronary angioplasty in patients with acute myocardial infarction. Circulation 75: 420, 1987.PubMedGoogle Scholar
  28. 28.
    Topol EJ, Califf RM, George BS, Kereiakes DJ, Abottsmith CW, Candela RJ, Lee KL, Pitt B, Stack RS, O’Neill WW: A randomized trial of immediate versus delayed elective angioplasty after intravenous tissue plasminogen activator in acute myocardial infarction. N Engl J Med 317: 581, 1987.PubMedGoogle Scholar
  29. 29.
    TIMI Study Group: Comparison of invasive and conservative strategies after treatment with intravenous tissue plasminogen activator in acute myocardial infarction: Results of the thrombolysis in myocardial infarction (TIMI) Phase II trial. N Engl J Med 320: 618, 1989.Google Scholar
  30. 30.
    Meizlish JL, Berger HJ, Plankey M, Errico D, Levy W, Zaret BL: Functional left ventricular aneurysm formation with acute anterior transmural myocardial infarction. Incidence, natural history and prognostic implications. N Engl J Med 311: 1001, 1984.PubMedGoogle Scholar
  31. 31.
    Kayden DS, Wackers FJ, Zaret BL: Left ventricular aneurysm formation after thrombolytic therapy for anterior infarction: TIMI Phase I and open label 1985–1986. Circulation 76(Part II): IV-97, 1987.Google Scholar
  32. 32.
    Duncan J, Koster K, Zaret E, Wackers F, Zaret B: A new method of quantification of diastolic deformity from radionuclide angiography. Circulation 76(Suppl IV): 548, 1987.Google Scholar
  33. 33.
    Verani MS, Tortoledo FE, Batty JW, Raizner AE: Effect of coronary artery recanalization on right ventricular function in patients with acute myocardial infarction. J Am Coll Cardiol 5: 1029, 1985.PubMedGoogle Scholar
  34. 34.
    Wackers FJTh, Busemann Sokole E, Samson G, Van der Shoot JB, Lie KI, Liem KL, Wellens HJJ: Value and limitations of thallium-201 scintigraphy in the acute phase of myocardial infarction. N Engl J Med 295: 1, 1976.PubMedGoogle Scholar
  35. 35.
    Silverman KJ, Becker LC, Bulkley BH, Burow RD, Mellits ED, Kallman CH, Weisfeldt ML: Value of early thallium-201 scintigraphy for predicting mortality in patients with acute myocardial infarction. Circulation 61: 996, 1980.PubMedGoogle Scholar
  36. 36.
    Becker LC, Silverman KJ, Bulkley BH, Kallman CH, Mellits ED, Weisfeld M: Comparison of early thallium-201 scintigraphy and gated blood pool imaging for predicting mortality in patients with acute myocardial infarction. Circulation 67: 1272, 1983.PubMedGoogle Scholar
  37. 37.
    Perez-Gonzalez J, Botvinick EH, Dunn R, Rahimtoola S, Ports T, Chatterjee K, Parmley WW: The late prognostic value of acute scintigraphic measurement of myocardial infarction size. Circulation 66: 960, 1982.PubMedGoogle Scholar
  38. 38.
    Gibson RS, Taylor GJ, Watson DD, Berger BC, Crampton RS, Martin RP, Beller GA: Prognostic significance of resting anterior thallium-201 defects in patients with inferior myocardial infarction. J Nucl Med 21: 1015, 1980.PubMedGoogle Scholar
  39. 39.
    Markis JE, Malagold M, Parker JA, Silverman KJ, Barry WH, Als AV, Paulin S, Grossman W, Braunwald E: Myocardial salvage after intracoronary thrombolysis with streptokinase in acute myocardial infarction. Assessment by intracoronary thallium-201. N Engl J Med 305: 777, 1981.PubMedGoogle Scholar
  40. 40.
    Maddahi J, Ganz W, Ninomiya K, Hashida J, Fishbein MC, Mondkar A, Buchbinder N, Marcus H, Geft I, Shah PK, Rozanski A, Swan HJC, Berman DS: Myocardial salvage by intracoronary thrombolysis in evolving acute myocardial infarction: Evaluation using intracoronary injection of thallium-201. Am Heart J 102: 664, 1981.PubMedGoogle Scholar
  41. 41.
    Schofer J, Mathey DG, Monty R, Bleifeld W, Stritzke P: Use of dual intracoronary scintigraphy with thallium-201 and technetium-99m pyrophosphate to predict improvement in left ventricular wall motion immediately after intracoronary thrombolysis in acute myocardial infarction. J Am Coll Cardiol 2: 737, 1983.PubMedGoogle Scholar
  42. 42.
    Melin JA, Becker LC, Bulkley BH: Differences in thallium-201 uptake in reperfused and nonreperfused myocardial infarction. Circ Res 53: 414, 1983.PubMedGoogle Scholar
  43. 43.
    Okada RD, Pohost GM: The use of preintervention and postintervention thallium imaging for assessing the early and late effects of experimental coronary arterial reperfusion in dogs. Circulation 69: 1153, 1984.PubMedGoogle Scholar
  44. 44.
    Granato JE, Watson DD, Flanagan TL, Gascho JA, Beller GA: Myocardial thallium-201 kinetics during coronary occlusion and reperfusion: Influence of method of reflow and timing of thallium-201 administration. Circulation 73: 150, 1986.PubMedGoogle Scholar
  45. 45.
    De Coster PM, Melin JA, Detry JMR, Brasseur LA, Beckers C, Col J: Coronary artery reperfusion in acute myocardial infarction: Assessment by pre- and post-intervention thal-lium-201 myocardial perfusion imaging. Am J Cardiol 55: 889, 1985.PubMedGoogle Scholar
  46. 46.
    Weiss AT, Maddahi J, Lew AS, Shah PK, Ganz W, Swan HJC, Berman DS: Reverse redistribution of thallium-201: A sign of nontransmural myocardial infarction with patency of the infarct-related coronary artery. J Am Coll Cardiol 7: 61, 1986.PubMedGoogle Scholar
  47. 47.
    Holman BL, Sporn V, Jones AG, Sia STB, Perez-Balino N, Davison A, Lister-James J, Kronauge JF, Mitta AEA, Camin LL, Campbell S, Williams SJ, Carpenter AT: Myocardial imaging with technetium-99m CPI: Initial experience in the human. J Nucl Med 28: 13, 1987.PubMedGoogle Scholar
  48. 48.
    Okada R, Williams S, Glover D, Crowley K, Garneau J: Myocardial kinetics of technetium-99m-hexakis-2-methoxy-2-methylpropyl-isonitrile. J Am Coll Cardiol 9(Suppl A): 26A, 1987.Google Scholar
  49. 49.
    Liu P, Houle S, Mills L, Dawood F: Kinetics of Tc-99m MIBI uptake and clearance in ischemia-reperfusion: Comparison with Tl-201. Circulation 76(part IV): IV-216, 1987.Google Scholar
  50. 50.
    Verani MS, Jeroudi MO, Mahmarian JJ: Myocardial salvage by coronary reperfusion: Quantification with Tc-99m hexakis 2-methoxyisobutyl isonitrile imaging. Circulation 76(part IV): IV-216, 1987.Google Scholar
  51. 51.
    Kayden DS, Mattera JA, Zaret BL, Wackers FJ: Demonstration of reperfusion after throm-bolysis with Tc-99m isonitrile myocardial imaging. J Nucl Med 29: 1865, 1988.PubMedGoogle Scholar
  52. 52.
    Braunwald E, Kloner RA: The stunned myocardium: Prolonged, postischemic ventricular dysfunction. Circulation 66: 1146, 1982.PubMedGoogle Scholar
  53. 53.
    Schon HR, Schelbert HR, Najafi A, Hansen H, Huang H, Barrio J, Phelps ME: C-11 labelled palmitic acid for the noninvasive evaluation of regional myocardial fatty acid metabolism with positron-computed tomography. II. Kinetics of C-11 palmitic acid in acutely ischemic myocardium. Am Heart J 103: 548, 1982.PubMedGoogle Scholar
  54. 54.
    Schelbert HR, Henze E, Keen R, Schon HR, Hansen H, Selin C, Huang SC, Barrio JR, Phelps ME: C-11 palmitate for the noninvasive evaluation of regional myocardial fatty acid metabolism with positron-computed tomography. IV. In vivo evaluation of acute demand-induced ischemia in dogs. Am Heart J 106: 736, 1983.PubMedGoogle Scholar
  55. 55.
    Schwaiger M, Huang SC, Krivokapich J, Phelps ME, Henze E, Schelbert HR: Myocardial glucose utilization measured noninvasively in man by positron tomography. J Am Coll Cardiol 1(Part 2): 688, 1983.Google Scholar
  56. 56.
    Brunken RC, Kottou S, Schwaiger M, Ratib OM, Schelben HR: Positron tomography detects viable tissue in myocardium with fixed Tl-201 defects on SPECT. Circulation 76(Suppl IV): IV-65, 1987.Google Scholar
  57. 57.
    Marshall RC, Tillisch JH, Phelps ME, Huang SC, Carson R, Henze E, Schelben HR: Identification and differentiation of resting myocardial ischemia and infarction in man with positron computed tomography, 18F-labelled fluorodeoxyglucose and N-13 ammonia. Circulation 67: 766, 1983.PubMedGoogle Scholar
  58. 58.
    Schwaiger M, Brunken RC, Grover M, Krivokapich J, Child JS, Tillisch JM, Marshall RC, Schelbert HR: Regional metabolism in patients with acute myocardial infarction determined by positron tomography (PET). Circulation 70(Suppl II): 11–249, 1984.Google Scholar
  59. 59.
    Tillisch, J, Brunken R, Marshall R, Schwaiger M, Mandelkern M, Phelps M, Schelbert H: Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med 314: 884, 1986.PubMedGoogle Scholar
  60. 60.
    Rauch B, Helus F, Grunze M, Braunwell E, Mall G, Hasselbach W, Kubler W: Kinetics of 13N-ammonia uptake in myocardial single cells indicating potential limitations in its applicability as a market of myocardial blood flow. Circulation 71: 387, 1985.PubMedGoogle Scholar
  61. 61.
    Schelbert HR, Phelps ME, Huang SC, MacDonald NS, Hansen H, Selin C, Kuhl DE: N-13 as an indicator of myocardial blood flow. Circulation 63: 1259, 1981.PubMedGoogle Scholar
  62. 62.
    Shah A, Schelbert HR, Schwaiger M, Henze E, Hansen H, Selin C, Huang SC: Measurement of regional myocardial blood flow with N-13 ammonia and positron-emission tomo¬graphy in intact dogs. J Am Coll Cardiol 5: 92, 1985.PubMedGoogle Scholar
  63. 63.
    Mullani NA, Gould KL: First pass regional blood flow measurements with external detectors. J Nucl Med 24: 577, 1983.PubMedGoogle Scholar
  64. 64.
    Mullani NA, Goldstein RA, Gould KL, Fisher DJ, Marani SK, O’Brien HA: Myocardial perfusion with rubidium-82. I. Measurement of extraction fraction and flow with external detectors. J Nucl Med 24: 898, 1983.PubMedGoogle Scholar
  65. 65.
    Goldstein RA, Mullani NA, Fisher D, Marani S, Gould KL, O’Brien HA: Myocardial perfusion with rubidium-82. II. The effects of metabolic and pharmacologic interventions. J Nucl Med 24: 907, 1983.PubMedGoogle Scholar
  66. 66.
    Goldstein RA: Kinetics of Rb-82 after coronary occlusion and reperfusion. Assessment of patency and viability in open chest dogs. J Clin Invest 75: 1131, 1985.PubMedGoogle Scholar
  67. 67.
    Gould KL, Goldstein RA, Mullani NA, Kirkeeide, RL, Wong WH, Tewson TJ, Berridge MS, Bolomey LA, Hartz RK, Smalling RW, Fuentes F, Nishikawa A: Noninvasive assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilation. VIII. Clinical feasibility of positron cardiac imaging without a cyclotron using generator-produced rubidium-82. J Am Coll Cardiol 7: 775, 1986.PubMedGoogle Scholar
  68. 68.
    Wilson RA, Shea MJ, DeLandsheere CM, Turton D, Brady F, Deanfield JE, Selwyn AP: Validation of quantitation of regional myocardial blood flow in vivo with 11C-labelled human albumin microspheres and positron emission tomography. Circulation 70: 717, 1984.PubMedGoogle Scholar
  69. 69.
    Van der Wall EE, Heidandal GAK, Den Hollander W, Westera G, Roos JP: Metabolic myocardial imaging with I–123 labelled heptadecanoic acid in patients with angina pectoris. Eur J Nucl Med 6: 391, 1981.PubMedGoogle Scholar
  70. 70.
    Hoeck A, Freundlieb C, Vyska K, Loerse B, Erbel R, Feinendegen LE: Myocardial imaging and metabolic studies with [17–1–123] iodoheptadecanoic acid in patients with idiopathic congestive cardiomyopathy. J Nucl Med 24: 22, 1983.Google Scholar
  71. 71.
    Visser FC, Van Eenige MJ, Westera G, Den Hollander W, Roos JP: Kinetics of radioiodinated heptadecanoic acid and metabolites in the normal and ischemic canine heart. Eur Heart J 6(Suppl B): 97, 1986.Google Scholar
  72. 72.
    Livni E, Elmaleh DR, Barlai-Kovach MM, Goodman MM, Knapp FF, Strauss HW: Radioiodinated beta-methyl phenyl fatty acids as potential tracers for myocardial imaging and metabolism. Eur Heart J 6(Suppl B): 85, 1985.PubMedGoogle Scholar
  73. 73.
    Yoshiharu Y, Brill AB, Som P, Yamamoto K, Srivastava SC, Iwai J, Elmaleh DR, Livni E, Strauss HW, Goodman MM, Knapp FF: Regional myocardial substrate uptake in hyper-tensive rats: A quantitative autoradiographic measurement. Science 227: 1494, 1985.Google Scholar
  74. 74.
    Parkey RW, Bonte FJ, Meyer SL, Atkins JM, Curry GL, Stokely EM, WillersonJT: A new method for radionuclide imaging of acute myocardial infarction in humans. Circulation 50: 540, 1974.PubMedGoogle Scholar
  75. 75.
    Falkoff M, Parkey RW, Bonte FJ, Lewis JS, Buja LM, Dehmer G, Willerson JT: Technetium-99m stannous pyrophosphate myocardial scintigraphy: Serial imaging to detect myocardial infarcts in patients. Clin Cardiol 1: 163, 1978.Google Scholar
  76. 76.
    Zaret BL, DiCola VC, Donabedian RK, Puri S, Wolfson S, Freedman GS, Cohen LS: Dual radionuclide study of myocardial infarction. Relationships between myocardial uptake of potassium-43, technetium-99m stannous pyrophosphate, regional myocardial blood flow, and creatine Phosphokinase depletion. Circulation 53: 422, 1976.PubMedGoogle Scholar
  77. 77.
    Holman BL, Lesch M, Alpert JS: Myocardial scintigraphy with technetium-99m pyrophos-phate during the early phase of acute infarction. Am J Cardiol 41: 39, 1978.PubMedGoogle Scholar
  78. 78.
    Olson HG, Lyons KP, Aronow WS, Brown WT, Greenfield RS: Follow-up technetium-99m stannous pyrophosphate myocardial scintigrams after acute myocardial infarction. Circulation 56: 181, 1977.PubMedGoogle Scholar
  79. 79.
    Wheelan K, Wolfe C, Corbett J, Rude RE, Winniford M, Parkey RW, Buja LM, Willerson JT: Early positive technetium-99m stannous pyrophosphate images as a marker of reperfusion after thrombolytic therapy for acute myocardial infarction. Am J Cardiol 56: 252, 1985.PubMedGoogle Scholar
  80. 80.
    Berger H, Alderson P, Becker L, Cannon P, Gold H, James C, Johnson L, Khaw B, LaFrance N, Lieberman H, Mattis J, Seldin D, Strauss W, Yasuda T, Haber E: Multicenter trial of In-Ill antimyosin for infarct-avid imaging. J Nucl Med 27: 371, 1986.Google Scholar
  81. 81.
    Khaw BA, Gold HK, Leinback RL, Fallon JT, Strauss W, Pohost GM, Haber E: Early imaging of experimental myocardial infarction by intracoronary administration of 131I-labelled anticardiac myosin (Fab’)2 fragments. Circulation 58: 1137, 1978.PubMedGoogle Scholar
  82. 82.
    Thakur ML, Gottschalk A, Zaret BL: Imaging experimental myocardial infarction with indium-111-labelled autologous leukocytes: Effects of infarct age and residual regional myocardial blood flow. Circulation 60: 297, 1979.PubMedGoogle Scholar
  83. 83.
    Mullane KM, Read N, Salmon JA, Moncada S: The role of leukocytes in acute myocardial infarction in anesthetized dogs: Relationship to myocardial salvage by antiinflammatory drugs. J Pharm Exp Ther 228: 510, 1983.Google Scholar
  84. 84.
    Jolly SR, Lucchesi BR: Effect of BW755C in an occlusion-reperfusion model of ischemic myocardial injury. Am Heart J 106: 8, 1983.PubMedGoogle Scholar
  85. 85.
    Corbett JR, Lewis M, Willerson JT, Nicod PH, Huxley RL, Simon T, Rude RE, Henderson E, Parkey R, Rellas J, Buja M, Sokolov JJ, Lewis SE: 99m Tc-pyrophosphate imaging in patients with acute myocardial infarction: Comparison of planar imaging with single-photon tomography with and without blood pool overlay. Circulation 69: 1120, 1984.PubMedGoogle Scholar
  86. 86.
    Caldwell JH, Williams DL, Harp GD, StrattonJR, RitchieJL: Quantitation of size of relative myocardial perfusion defect by single-photon emission computed tomography. Circulation 70: 1048, 1984.PubMedGoogle Scholar
  87. 87.
    Corbett JR, Lewis SE, Wolfe CL, Jansen DE, Lewis M, Rellas JS, Parkey RW, Rude RE, Buja M, Willerson JT: Measurement of myocardial infarct size in patients by technetium pyrophosphate single emission tomography. Am J Cardiol 54: 1231, 1984.PubMedGoogle Scholar
  88. 88.
    Wolfe CL, Corbett JR, Lewis SE, Buja LM, Willerson JT: Determination of left ventricular mass by single photon emission computed tomography with thallium-201. Am J Cardiol 53: 1365, 1984.PubMedGoogle Scholar
  89. 89.
    Wolfe CL, Lewis SE, Corbett JR, Parkey RW, Buja M, Willerson JT: Measurement of myocardial infarction fraction using single photon emission computed tomography. J Am Coll Cardiol 6: 145, 1985.PubMedGoogle Scholar
  90. 90.
    Corbett JR, Dehmer GJ, Lewis SE, Woodward W, Henderson E, Parkey RW, Blomqvist CG, Willerson JT: The prognostic value of submaximal exercise testing with radionuclide ventriculography before hospital discharge in patients with recent myocardial infarction. Circulation 64: 535, 1981.PubMedGoogle Scholar
  91. 91.
    Hung J, Goris ML, Nash E, Kraemer HC, DeBusk RF: Comparative value of maximal treadmill testing, exercise thallium myocardial perfusion scintigraphy and exercise radio-nuclide ventriculography for distinguishing high- and low-risk patients soon after myocardial infarction. Am J Cardiol 53: 1221, 1984.PubMedGoogle Scholar
  92. 92.
    Wasserman AG, Katz RJ, Cleary P, Varma VM, Reba RC, Ross AM: Noninvasive detection of multivessel disease after myocardial infarction by exercise radionuclide ventriculography. Am J Cardiol 50: 1242, 1982.PubMedGoogle Scholar
  93. 93.
    Nicod P, Corbett JR, Firth BG, Lewis SE, Rude RD, Huxley R, Willerson JT: Prognostic value of resting submaximal exercise radionuclide ventriculography after acute myocardial infarction in high-risk patients with single and multivessel disease. Am J Cardiol 52: 30, 1983.PubMedGoogle Scholar
  94. 94.
    Morris KG, Palmeri ST, Califf RM, McKinnis RA, Higginbotham MB, Coleman RE, Cobb FR: Value of radionuclide angiography for predicting specific cardiac events after acute myocardial infarction. Am J Cardiol 55: 318, 1985.PubMedGoogle Scholar
  95. 95.
    Kayden DS, Wackers FJ, Zaret BL: Left ventricular response to exercise following throm-bolysis: Results of the TIMI open label 1985–1986 trial. Circulation 76(Part II): IV-361, 1987.Google Scholar
  96. 96.
    Pulido JI, Doss J, Tweig D, Blomqvist GC, Faulkner D, Horn V, DeBates D, Tobey M, Parkey RW, Willerson JT: Submaximal exercise testing after acute myocardial infarction: Myocardial scintigraphic and electrocardiographic observations. Am J Cardiol 42: 19, 1978.PubMedGoogle Scholar
  97. 97.
    Wasserman AG, Katz RJ, Cleary P, Varma VM, Reba RC, Ross AM: Noninvasive detection of multivessel disease after myocardial infarction by exercise radionuclide ventriculography. Am J Cardiol 50: 1242, 1982.PubMedGoogle Scholar
  98. 98.
    Upton MT, Palmeri ST, Jones RH, Coleman RE, Cobb FR: Assessment of left ventricular function by resting and exercise radionuclide angiocardiography following acute myocardial infarction. Am Heart J 104: 1232, 1982.PubMedGoogle Scholar
  99. 99.
    Nicod P, Corbett JR, Firth BG, Lewis SE, Rude RD, Huxley R, Willerson JT: Prognostic value of resting submaximal exercise radionuclide ventriculography after acute myocardial infarction in high-risk patients with single and multivessel disease. Am J Cardiol 52: 30, 1983.PubMedGoogle Scholar
  100. 100.
    Guerci AD, Gerstenblithy G, Brinker JA, et al.: A randomized trial of intravenous tissue plasminogen activator for acute myocardial infarction with subsequent randomization to elective coronary angioplasty. N Engl J Med 317: 1613, 1987.PubMedGoogle Scholar
  101. 101.
    Wackers FJT, Fetterman RC, Mattera JA, Clements JP: Quantitative planar thallium-201 stress scintigraphy: A critical evaluation of the method. Seminars in Nucl Med 40: 46, 1985.Google Scholar
  102. 102.
    Gibson RS, Watson DD, Craddock GB, Crampton RS, Kaiser DL, Denny MJ, Beller GA: Prediction of cardiac events after uncomplicated myocardial infarction: A prospective study comparing predischarge exercise thallium-201 scintigraphy and coronary angiography. Circulation 68: 321, 1983.PubMedGoogle Scholar
  103. 103.
    Varma SK, Gibson RS: Predischarge exercise ECG vs. thallium-201 in predicting prognosis after non-Q-wave myocardial infarction. Circulation 76(part 2): IV-157, 1987.Google Scholar
  104. 104.
    Leppo JA, O’Brien J, Rothendler JA, Getchell JD, Lee VW: dipyridamole-thallium-201 scintigraphy in the prediction of future cardiac events after myocardial infarction. N Engl J Med 310: 1014, 1984.PubMedGoogle Scholar
  105. 105.
    Homma S, Callahan RJ, Ameer, B, McKusick KA, Strauss HW, Okada RD, Boucher CA: Usefulness of oral dipyridamole suspension for stress thallium imaging without exercise in the detection of coronary artery disease. Am J Cardiol 57: 503, 1986.PubMedGoogle Scholar
  106. 106.
    Gottlieb SO, Weisfeldt ML, Ouyang P, Mellits ED, Gerstenblith G: Silent ischemia as a marker for early unfavorable outcomes in patients with unstable angina. N Engl J Med 314: 1214, 1986.PubMedGoogle Scholar
  107. 107.
    Hausmann D, Nikutta P, Hartwig C, Lichtlen PR: ST segment depression during Holter ECG: A reliable indicator of coronary disease? Circulation 76(Suppl IV): IV-79, 1987.Google Scholar
  108. 108.
    Tamaki N, Gill JB, Moore RH, Yasuda T, Boucher CA, Strauss HW: Clinical response to daily activities and exercise in normal subjects assessed by an ambulatory ventricular function monitor. Am J Cardiol 59: 1164, 1987.PubMedGoogle Scholar
  109. 109.
    Kayden DS, Wackers FJ, Francis CK, Zaret BL: Silent left ventricular dysfunction during ambulatory radionuclide monitoring following thrombolysis: A potential predictor of sub-sequent cardiac morbidity. J Am Coll Cardiol 11(Suppl A): 25A, 1988.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • David S. Kayden
  • Frans J. TH. Wackers
  • Barry L. Zaret

There are no affiliations available

Personalised recommendations