Differential Responsiveness of Normal and Neoplastic Mammary Epithelium to Unsaturated VS Saturated Fatty Acids

  • W. R. Kidwell
Part of the Prostaglandins, Leukotrienes, and Cancer book series (PLAC, volume 6)


For well over forty years it has been known that spontantaneous, as well as carcinogen-induced mammary tumor development in experimental animals was potentiated by dietary fat (1). Likewise, epidemiological analyses over a nearly equally long time period (2) have indicated that the quality and/or quantity of dietary fat affected breast tumor incidence in man. A great number of plausible mechanisms for this relationship have been suggested, including dietary fat effects on hormone levels (3), actions of certain lipids as tumor promoters (4), prostaglandin substrates (5,6), membrane fluidity altering agents (7), sensitizers of cells to growth factors (8), cell-cell communication modulating substances (9), et c. Suffice it to say that the mechanism whereby dietary fat influences breast tumor incidence in man or mouse remains to be explained.


Mast Cell Unsaturated Fatty Acid Saturated Fatty Acid Mammary Epithelial Cell Fatty Acid Uptake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tatmenbaum, A. Cancer Res, 2: 49–53, 1942.Google Scholar
  2. 2.
    Lea, A. J. Lancet 2: 332–333, 1966.CrossRefGoogle Scholar
  3. 3.
    Chan, P. C, Didato, F. and Cohen, L. A. Proc. Soc. Exp. Biol. Med. 149: 133–135, 1975.PubMedGoogle Scholar
  4. 4.
    Carroll, K. K. Cancer Res. 35: 3374–3383, 1975.PubMedGoogle Scholar
  5. 5.
    Hillyard, L. A. and Abraham, S. Cancer Res. 39: 4430–4437, 1979.PubMedGoogle Scholar
  6. 6.
    Dave, J. and Knazek, R. A. Proc. Natl. Acad. Sci. USA 77: 6597–6600, 1980.PubMedCrossRefGoogle Scholar
  7. 7.
    Coleman, R. Biochem. Biophys. Acta 300: 1–30, 1973.PubMedGoogle Scholar
  8. 8.
    Knazek, R. A. and Liu, S. C. Proc. Soc. Exp. Biol. Med. 162: 346–350, 1979.PubMedGoogle Scholar
  9. 9.
    Aylsworth, C. F., Jone, C., Trosko, J. E., Meites, J. and Welsch, C. W. J. Nati. Cancer Inst. 72: 637–645, 1984.Google Scholar
  10. 10.
    Kidwell, W. R., Monaco, M. E., Wicha, M. S. and Smith, G. S. Cancer Res. 38: 4109–4100, 1978.Google Scholar
  11. 11.
    Wicha, M. S., Liotta, L. A. and Kidwell, W. R. Cancer Res. 39: 426–435, 1979.PubMedGoogle Scholar
  12. 12.
    Ben-David, M. Endocrin. 83: 1217–1223, 1968.CrossRefGoogle Scholar
  13. 13.
    Kidwell, W. R., Wicha, M. S., Salomon, D. S. and Liotta, L. A In: Cellk Biology of Breast Cancer (Eds. M. Brennan, C. M. McGrath and M. Rich), Academic Press, New York, 1980, pp 17–33.Google Scholar
  14. 14.
    Kidwell, W. R., Knazek, R. A., Vonderhaar, B. K. and Losonczy, I. In: Molecular Interrelations of Nutrition and Cancer (Eds. M. S. Arnott, J. van Eys and Y.-M. Wang), Raven Press, New York, 1982, pp 219–236.Google Scholar
  15. 15.
    Resch, K. J. Immunol. 32: 119–124, 1980.Google Scholar
  16. 16.
    Apostolov, K. and Barker, W. FEBS Lett. 126: 261–264, 1981.PubMedCrossRefGoogle Scholar
  17. 17.
    Wicha, M. S., Liotta, L. A., Vonderhaar, B. K. and Kidwell, W. R. Dev. Biol. 80: 253–261, 1980.PubMedCrossRefGoogle Scholar
  18. 18.
    Kidwell, W. R. and Shaffer, J. J. Amer. Oil Chem. Soc. 12: 1900–1904, 1984.Google Scholar
  19. 19.
    Fredholm, B. B., Meng, H. C. and Roseli, S. Life Sci. 7: 1209–1211, 1968.PubMedCrossRefGoogle Scholar
  20. 20.
    Schrad, P. J. and Janss, D. H. J. Natl. Cancer Inst. 65: 949–953, 1980.Google Scholar

Copyright information

© Kluwer Academic Publishers, Boston 1989

Authors and Affiliations

  • W. R. Kidwell
    • 1
  1. 1.Laboratory of Tumor Immunology and BiologyNational Cancer InstituteBethesdaUSA

Personalised recommendations