Leishmaniasis pp 589-596 | Cite as

A Simple, Highly Repetitive Sequence in the Leishmania Genome

  • John Ellis
  • Julian Crampton
Part of the NATO ASI Series book series (NSSA, volume 171)


Leishmania are simple unicellular protozoa which are tramsitted by the bite of an infected sandfly, producing a spectrum of clinical diseases in manl. Since their discovery in 1903, the organisation of the genome of this clinically important protozoan has received little attention. We have used DNA hybridisation studies to identify many of the repetitive DNA sequences in the Leishamania genome. Here we report the characterisation of the most highly repetitive DNA sequence that we have been able to isolate. Differences in copy number and organisation of this sequence within the Leishmania genome may well contribute to the chromosome size variations previously reported by other investigators.


Repetitive Sequence Leishmania Species Leishmania DNAs Leishmania Isolate Leishmania Genome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.E.C. Manson-Bahr and F.I.C Apted, “Manson’s Tropical diseases”, Bailliere Tindall (1983)Google Scholar
  2. 2.
    A.J. Jeffreys, V. Wilson and S.L. Thein, Individual-specific ‘fingerprinting ’ of human DNA, Nature, 316:176 (1985)CrossRefGoogle Scholar
  3. 3.
    L.H.T. Van der Ploeg, M. Smits, T. Ponnudurai, A. Vermeulen, J. Meuwissen and G. Langley, Chromosome-sized DNA molecules of Plasmodium falciparum, Science 229:658 (1984)CrossRefGoogle Scholar
  4. 4.
    R.J. Britten, D.E. Graham, F.C. Eden, D.M. Painchaud and E.N. Davidson, J. Mol. Evol., 9:1 (1976)PubMedCrossRefGoogle Scholar
  5. 5.
    D. Hanahan and M. Meselsohn, Plasmid screening at high colony density, Gene, 10:62 (1980)CrossRefGoogle Scholar
  6. 6.
    M.J. Gait, “Oligonucleotide Synthesis — a Practical Approach” IRL Press, Oxford (1984)Google Scholar
  7. 7.
    P.W.J Rigby, M. Deckmann, C. Rhodes and P. Berg, Labelling DNA to high specific activity in vitro by nick-translation with DNA polymerase I. J.Mol. Biol. 113:1237 (1977)CrossRefGoogle Scholar
  8. 8.
    T. Maniâtis, E.F. Fritsch and J. Sambrook “Molecular Cloning. A laboratory Manual” Cold Spring Harbor, USA. (1982)Google Scholar
  9. 9.
    N.N. Massamba and R.O. Williams, Parasitology 88:55 (1984)PubMedCrossRefGoogle Scholar
  10. 10.
    F. Sanger, S. Nicklen and A.R. Coulsen, DNA sequencing with chain termination inhibitors. Proc Nat, Acad. Sci. 74:5463 (1977)CrossRefGoogle Scholar
  11. 11.
    G.F. Carle and M.V. Olson, Nucl. Acids Res. 12:5647 (1984)PubMedCrossRefGoogle Scholar
  12. 12.
    L.H.T. Van der Ploeg, A.Y.C. Liu and P. Borst, Structure of the growing telomeres of Trypanosomes. Cell 36:459 (1984)PubMedCrossRefGoogle Scholar
  13. 13.
    E.H. Balckburn and P.B. Challoner Cell 36:447 (1984)CrossRefGoogle Scholar
  14. 14.
    S.H. Giannini, M. Schittini, J.S. Keithly, P.W. Warburton, C.R. Cantor and L.H.T. Van der Ploeg, Karyotype analysis of Leishmania species and its use in classification and clinical diagnosis. Science 232:762 (1986)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • John Ellis
    • 1
  • Julian Crampton
    • 1
  1. 1.Wolfson Unit of Molecular GeneticsLiverpool School of Tropical MedicineLiverpoolUK

Personalised recommendations