Advertisement

Abstract

The study of protein stability is currently undergoing a dramatic change. Early work, especially after Kauzmann (1959), centered on the analysis of simple chemical model systems to determine the contributions of different types of interactions to stability. Amino acids that are sequestered from solvent in the folded protein were emphasized, since these groups presumably undergo the largest changes in environment during folding (Tanford, 1968, 1970; Pace, 1975; Privalov, 1979). From an inventory of interactions derived from the x-ray crystal structure of a protein, the stabilizing contribution of each amino acid be calculated using the free energies determined from thermodynamic studies of model systems. Implicit in this approach is the assumption that each interaction of specific type—each hydrogen bond, for example, or each square angstrom of buried hydrophobic surface area—contributes equally to stability regardless of its unique structural context.

Keywords

Amino Acid Substitution Cross Link Protein Stability Stabilization Energy Protein Conformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, D. J., and Leo, A. J., 1987, Extension of the fragment method to calculate amino acid zwitterion and side chain partition coefficients, Proteins 2:130–152.PubMedGoogle Scholar
  2. Ackers, G. K., and Smith, F. R., 1985, Effects of site-specific amino acid modification on protein interactions and biological function, Annu. Rev. Biachem. 54:597–629.Google Scholar
  3. Ahern, T. J., Casal, J. I., Petsko, J. A., and Klibanov, A. M., 1987, Control of oligomeric enzyme thermostability by protein engineering, Proc. Natl. Acad. Sci. U.S.A. 84:675–679.PubMedGoogle Scholar
  4. Alber, T., and Wozniak, J. A., 1985, A genetic screen for mutations that increase the thermal stability of phage T4 lysozyme, Proc. Natl. Acad. Sci. U.S.A. 82:747–750.PubMedGoogle Scholar
  5. Alber, T., Grütter, M. G., Gray, T. M., Wozniak, J. A., Weaver, L. H., Chen, B.-L., Baker, E. N., and Matthews, B. W., 1986, Structure and stability of mutant lysozymes from bacteriophage T4, in: UCLA Symposia on Molecular and Cellular Biology, New Series, Volume 39, Protein Structure Folding and Design (D. L. Oxender, ed.), Alan R. Liss, New York, pp. 307–318.Google Scholar
  6. Alber, T., Sun, D.-P., Nye, J. A., Muchmore, D. C., and Matthews, B. W., 1987a, Temperature-sensitive mutations of bacteriophage T4 lysozyme occur at sites of low mobility and low solvent accessibility in the folded protein, Biochemistry 26:3754–3758.PubMedGoogle Scholar
  7. Alber, T., Sun, D.-P., Wilson, K., Wozniak, J. A., Cook, S. P., and Matthews, B. W., 1987b, Contributions of hydrogen bonds of Thr 157 to the thermodynamic stability of phage T4 lysozyme, Nature 330:41–46.PubMedGoogle Scholar
  8. Alber, T., Bell, J. A., Sun, D.-P., Nicholson, H., Wozniak, J. A., Cook, S. P., and Matthews, B. W., 1988, Replacements of Pro 86 in phage T4 lysozyme extend an α-helix but do not alter protein stability, Science 239:631–635.PubMedGoogle Scholar
  9. Amir, D., and Haas, E., 1987, Estimation of intramolecular distance distributions in bovine pancreatic trypsin inhibitor by site-specific labeling and nonradiative excitation energy-transfer measurements, Biochemistry 26:2162–2175.PubMedGoogle Scholar
  10. Arridge, G. C., and Cannon, C. G., 1963, Calculation of the CONH dipole contribution to lattice energies of amides, polyamides, and polypeptides, Proc. R. Soc. Lond. [A] 278:91–109.Google Scholar
  11. Aune, K. C., Salahuddin, A., Zarlengo, M. H., and Tanford, C., 1967, Evidence for residual structure in acid and heat-denatured proteins, J. Biol. Chem. 242:4486–4489.PubMedGoogle Scholar
  12. Baker, E. N., and Hubbard, R. E., 1984, Hydrogen bonding in globular proteins, Prog. Biophys. Mol. Biol. 44: 97–179.PubMedGoogle Scholar
  13. Baldwin, R. L., 1986, Temperature dependence of the hydrophobic interaction in protein folding, Proc. Natl. Acad. Sci. U.S.A. 83:8069–8072.PubMedGoogle Scholar
  14. Baldwin, R. L., and Eisenberg, D., 1987, Protein stability, in: Protein Engineering (D. L. Oxender and C. F. Fox, eds.), Alan R. Liss, New York, pp. 127–148.Google Scholar
  15. Barksdale, A. D., and Stuehr, J. E., 1971, Kinetics of the helix-coil transition in aqueous poly(-glutamic acid), J. Am. Chem. Soc. 94:3334–3338.Google Scholar
  16. Barlow, D. J., and Thornton, J. M., 1983, Ion-pairs in proteins, J. Mol. Biol. 168:867–885.PubMedGoogle Scholar
  17. Barlow, D. J., and Thornton, J. M., 1986, The distribution of charged groups in proteins, Biopolymers 25: 1717–1733.PubMedGoogle Scholar
  18. Beasty, A. M., Hurle, M. R., Manz, J. T., Stackhouse, T., Onuffer, J. J., and Matthews, C. R., 1986, Effects of the Phe 22 to Leu, Glu 49 to Met, Gly 234 to Asp, and Gly 234 to Lys mutations on the folding and stability of the α-subunit of tryptophan synthase from Escherichia coli, Biochemistry 25:2965–2974.PubMedGoogle Scholar
  19. Beasty, A. M., Hurle, M., Manz, J. T., Stackhouse, T., and Matthews, C. R., 1987, Mutagenesis as a probe of protein folding and stability in: Protein Engineering (D. L. Oxender and C. F. Fox, eds.), Alan R. Liss, New York, pp. 91–102.Google Scholar
  20. Becktel, W. J., and Schellman, J. A., 1987, Protein stability curves, Biopolymers 26:1859–1877.PubMedGoogle Scholar
  21. Bello, J., 1977, Stability of protein conformation: Internal packing and enthalpy of fusion of model compounds, J. Theor. Biol. 68: 139–142.PubMedGoogle Scholar
  22. Bello, J., 1978, Tight packing of protein cores and interfaces, Im. J. Peptides 12:38–41.Google Scholar
  23. Bierzynski, A., and Baldwin, R. L., 1982, Local secondary structure in ribonuclease A denatured by guanidine-Hcl near 1°C, J. Mol. Biol. 162:173–186.PubMedGoogle Scholar
  24. Bierzynski, A., Kim, P. S., and Baldwin, R. L., 1982, A salt bridge stabilizes the helix formed by isolated C-peptide of RNAse A, Proc. Natl. Acad. Sci. U.S.A. 79:2470–2474.PubMedGoogle Scholar
  25. Blagdon, D. E., and Goodman, M., 1975, Mechanisms of protein and polypeptide helix initiation, Biopolymers 14:241–245.PubMedGoogle Scholar
  26. Brandts, J. F., Oliveira, R. J., and Westort, C., 1970, Thermodynamics of protein denaturation. Effect of pressure on the denaturation of ribonuclease A, Biochemistry 9: 1038–1048.PubMedGoogle Scholar
  27. Brant, D. A., and Flory, P. J., 1965, The role of dipole interactions in determining polypeptide configurations, J. Am. Chem. Soc. 87:663–664.Google Scholar
  28. Brown, J. E., and Klee, W. A., 1971, Helix-coil transition of the isolated amino terminus of ribonuclease, Biochemistry 10:470–476.PubMedGoogle Scholar
  29. Brown, L. R., DeMarco, A., Richarz, R., Wagner, G., and Wüthrich, K., 1978, The influence of a single salt bridge on static and dynamic features of the globular solution conformation of the bovine pancreatic trypsin inhibitor, Eur. J. Biochem. 88:87–95.PubMedGoogle Scholar
  30. Bryan, P. N., Rollence, M. L., Pantoliano, M. W., Wood, J., Finzel, B. C., Gilliland, G. L., Howard, A. J., and Poulos, T. L., 1986, Proteases of enhanced thermostability: Characterization of a thermostable variant of subtilisin, Proteins 1:326–334.PubMedGoogle Scholar
  31. Bundi, A., and Wüthrich, K., 1979, Use of amide 1H-NMR titration shifts for studies of polypeptide conformation, Biopolymers 18:299–311.Google Scholar
  32. Burley, S. K., and Petsko, G. A., 1985, Aromatic-aromatic interaction: A mechanism of protein structure stabilization, Science 229:23–28.PubMedGoogle Scholar
  33. Burley, S. K., and Petsko, G. A., 1988, Weakly polar interactions in proteins, Adv. Protein Chem. 39:125–189.PubMedGoogle Scholar
  34. Chazin, W. J., Goldenberg, D. P., Creighton, T. E., and Wüthrich, K., 1985, Comparative studies of conformation and internal mobility in native and circular basic pancreatic trypsin inhibitor by 1H nuclear magnetic resonance in solution, Eur. J. Biochem. 152:429–437.PubMedGoogle Scholar
  35. Chothia, C., 1975, Structural invariants in protein folding, Nature 254:304–308.PubMedGoogle Scholar
  36. Chothia, C., 1976, The nature of the accessible and buried surfaces in proteins, J. Mol. Biol. 105:1–14.PubMedGoogle Scholar
  37. Chothia, C. 1984, Principles that determine the structure of proteins, Annu. Rev. Biochem. 53:537–572.PubMedGoogle Scholar
  38. Chou, P. Y., and Fasman, G. D., 1974, Conformational parameters for amino acids in helical, ß-sheet, and random coil regions calculated for proteins, Biochemistry 13:211–222.PubMedGoogle Scholar
  39. Cohen, F. E., and Kuntz, I. D., 1987, Prediction of the three-dimensional structure of human growth hormone, Proteins 2:162–167.PubMedGoogle Scholar
  40. Cohen, F. E., and Sternberg, M. J. E., 1980, On the use of chemically derived distance constraints in the prediction of protein structure with myoglobin as an example, J. Mol. Biol. 137:9–22.PubMedGoogle Scholar
  41. Cohen, F. E., Abarbanel, R. M., Kuntz, I. D., and Fletterick, R. J., 1986, Turn prediction in proteins using a pattern-matching approach, Bioehemistry 25:266–275.Google Scholar
  42. Connolly, M. L., 1986a, Shape complementarity at the hemoglobin α:-1-ß-1 subunit interface, Biopolymers 25: 1229–1247.PubMedGoogle Scholar
  43. Connolly, M. L., 1986b, Atomic size packing defects in proteins, Int. J. Peptides 28:360–363.Google Scholar
  44. Creighton, T. E., 1983a, An empirical approach to protein conformation, stability and flexibility, Biopolymers 22:49–58.PubMedGoogle Scholar
  45. Creighton, T. E., 1983b, Proteins, W. H. Freeman, New York.Google Scholar
  46. Creighton, T. E., 1985, The problem of how and why proteins adopt folded conformations, J. Phys. Chem. 89: 2452–2459.Google Scholar
  47. Creighton, T. E., and Goldenberg, D. P., 1984, Kinetic role of a metastable native-like two-disulphide species in the folding transition of bovine pancreatic trypsin inhibitor, J. Mol. Biol. 179:497–526.PubMedGoogle Scholar
  48. Cronin, C. N., Malcolm, B. A., and Kirsh, J. F., 1987, Reversal of substrate specificity by site directed mutagenesis of aspartate amino transferase, J. Am. Chem. Soc. 109:2222–2223.Google Scholar
  49. Dill, K. A., 1985, Theory for the folding and stability of globular proteins, Bioehemistry 24:1501–1509.Google Scholar
  50. Dill, K. A., 1987, The stabilities of globular proteins, in: Protein Engineering (D. L. Oxender and C. F. Fox, eds.), Alan R. Liss, New York, pp. 187–192.Google Scholar
  51. Dlott, D. D., Frauenfelder, H., Langer, P., Roder, H., and Dilorio, E. E., 1983, Nanosecond flash photolysis study of carbon monoxide binding to the ß chain of hemoglobin Zurich [ß63(E7)His to Arg], Proc. Natl. Acad. Sci. U.S.A. 80:6239–6243.PubMedGoogle Scholar
  52. Dyson, H. J., Cross, K. J., Houghten, R. A., Wilson, I. A., Wright, P. E., and Lerner, R. A., 1985, The immunodominant site of a synthetic immunogen has a conformational preference in water for a type-II reverse turn, Nature 318:480–483.PubMedGoogle Scholar
  53. Eisenberg, D., and McLachlan, 1986, Solvation energy in protein folding and binding, Nature 319:199–203.PubMedGoogle Scholar
  54. Evans, P. A., Dobson, C. M., Kautz, R. A., Hatfull, G., and Fox, R. O., 1987, Proline isomerism in staphylococcal nuclease characterized by NMR and site-directed mutagenesis, Nature 329:266–268.PubMedGoogle Scholar
  55. Fermi, G., and Perutz, M. F., 1981, Haemoglobin and Myoglobin, Clarenden Press, Oxford.Google Scholar
  56. Fersht, A. R., 1971, Conformational equilibria and the salt bridge in chymotrypsin, Cold Spring Harbor Symp. Quant. Biol. 36:71–73.Google Scholar
  57. Fersht, A. R., 1987, The hydrogen bond in molecular recognition, Trends Biochem. Sci. 12:301–304.Google Scholar
  58. Fersht, A. R., Shi, J.-P., Knill-Jones, J., Lowe, D. M., Wilkinson, A. J., Blow, D. M., Brick, P., Carter, P., Waye, M. M. Y., and Winter, G., 1985, Hydrogen bonding and biological specificity analyzed by protein engineering, Nature 314:235–238.PubMedGoogle Scholar
  59. Flanagan, M. A., Garcia-Moreno, E. B., Friend, S. H., Feldmann, R. J., Scouloudi, H., and Gurd, F. R. N., 1983, Contributions of individual amino acid residues to the structural stability of cetacean myoglobins, Biochemistry 22:6027–6037.PubMedGoogle Scholar
  60. Garcia-Moreno, E. G., Chen, L. X., March, K. L., Gurd, R. S., and Gurd, F. R. N., 1985, Electrostatic interactions in sperm whale myoglobin, J. Biol. Chem. 260:14070–14082.PubMedGoogle Scholar
  61. Gilson, M. K., and Honig, B. H., 1987, Calculation of electrostatic potentials in an enzyme active site, Nature 330:84–86.PubMedGoogle Scholar
  62. Gilson, M. K., Rashin, A., Fine, R., and Honig, B., 1985, On the calculation of electrostatic interactions in proteins, J. Mol. Biol. 183:503–516.Google Scholar
  63. Glushko, V., Lawson, P. J., and Gurd, F. R. N., 1972, Conformational states of bovine pancreatic ribonuclease A observed by normal and partially relaxed carbon-13 nuclear magnetic resonance, J. Biol. Chem. 247: 3176–3185.PubMedGoogle Scholar
  64. Go, M., and Miyazawa, S., 1980, Relationship between mutability, polarity and exteriority of amino acid residues in protein evolution, Inf. J. Peptides 15:211–224.Google Scholar
  65. Go, N., 1975, Theory of reversible denaturation of globular proteins, Inf. J. Peptides 7:313–323.Google Scholar
  66. Goldenberg, D. P., 1985, Dissecting the roles of individual interactions in protein stability: Lessons from a circularized protein, J. Cell Biochem. 29:321–335.PubMedGoogle Scholar
  67. Goldenberg, D. P., 1988, Genetic studies of protein stability and mechanisms of folding, Annu. Rev. Biophys. Biophys. Chem. 17: 481–507.PubMedGoogle Scholar
  68. Goldenberg, D. P., and Creighton, T. E., 1984, Folding pathway of a circular form of bovine pancreatic trypsin inhibitor, J. Mol. Biol. 179:527–545.PubMedGoogle Scholar
  69. Goldenberg, D. P., and Creighton, T. E., 1985, Energetics of protein structure and folding, Biopolymers 24:167–182.PubMedGoogle Scholar
  70. Gray, T. M., and Matthews, B. W., 1987, Structural analysis of the temperature-sensitive mutant of bacteriophage T4 lysozyme, glycine 156 to aspartic acid, J. Biol. Chem. 262:16858–16864.PubMedGoogle Scholar
  71. Grütter, M. G., and Matthews, B. W., 1982, Amino acid substitutions far from the active site of bacteriophage T4 lysozyme reduce catalytic activity and suggest that the C-terminal lobe of the enzyme participates in substrate binding, J. Mol. Biol. 154:525–535.PubMedGoogle Scholar
  72. Grütter, M. G., Hawkes, R. B., and Matthews, B. W., 1979, Molecularbasis of thermostability in the lysozyme of bacteriophage T4, Nature 277:667–668.PubMedGoogle Scholar
  73. Grütter, M. G., Weaver, L. H., Gray, T. M., and Matthews, B. W., 1983, Structure, function, and evolution of the lysozyme from bacteriophage T4 lysozyme, in: Bacteriophage T4 (C. K. Matthews, E. M. Kutter, G. Mosig, and P. M. Berget, eds.), American Society for Microbiology, Washington, pp. 356–360.Google Scholar
  74. Grütter, M. G., Gray, T. M., Weaver, L. H., Alber, T., Wilson, K., and Matthews, B. W., 1987, Structural studies of mutants of the lysozyme of bacteriophage T4: The temperature-sensitive mutant protein Thr 157 to Ile, J. Mol. Biol. 197:315–329.PubMedGoogle Scholar
  75. Haas, E., and Amir, D., 1987, BPTI has a compact structure when the disulfide bonds are reduced, J. Cell. Bioehem. 11C:214.Google Scholar
  76. Hampsey, D. M., Das, G., and Sherman, F., 1986, Amino acid replacements in yeast iso-1-cytochrome c: Comparisons with the phylogenetic series and the tertiary structure of related cytochromes c, J. Biol. Chem. 261:3259–3271.PubMedGoogle Scholar
  77. Hawkes, R., Grütter, M. G., and Schellman, J., 1984, Thermodynamic stability and point mutations of bacteriophage T4 lysozyme, J. Mol. Biol. 175:195–212.PubMedGoogle Scholar
  78. Hecht, M. H., and Sauer, R. T., 1985, Phage λ repressor revertants, J. Mol. Biol. 186:53–63.PubMedGoogle Scholar
  79. Hecht, M. H., Nelson, H. C. M., and Sauer, R. T., 1983, Mutations in λ repressor’s amino-terminal domain: Implications for protein stability and DNA binding, Proc. Natl. Acad. Sci. U.S.A. 80:2676–2680.PubMedGoogle Scholar
  80. Hecht, M. H., Sturtevant, J. M., and Sauer, R. T., 1984a, Effect of amino acid replacements on the thermal stability of the NH2-terminal domain of phage λ repressor, Proc. Nat. Acad. Sci. U.S.A. 81:5685–5689.Google Scholar
  81. Hecht, M. H., Sturtevant, J. M., and Sauer, R. T., 1984b, Stabilization of λ repressor against thermal denaturation by site-directed Gly to Ala changes in α-helix three, Proc. Nat. Acad. Sei. U.S.A. 81:5685–5689.Google Scholar
  82. Hecht, M. H., Hehir, K. M., Nelson, H. C. M., Sturtevant, J. M., and Sauer, R., T., 1985, Increasing and decreasing protein stability: Effects of revertant substitutions on the thermal denaturation of phage λ repressor, J. Cell. Biochem. 29:217–224.PubMedGoogle Scholar
  83. Hendrix, J. D., and Welker, N. E., 1985, Isolation of a Baeillus stearothermophilus mutant exhibiting increased thermostability in its restriction endonuclease, J. Bacteriol. 162:682–692.PubMedGoogle Scholar
  84. Hol, W. G. J., van Duijnen, P. T., and Berendsen, H. J. C., 1978, The α-helix dipole and the properties of proteins, Nature 273:443–446.PubMedGoogle Scholar
  85. Hol, W. G. I., Halie, L. M., and Sander, C., 1981, Dipoles of the α-helix and ß-sheet: Their role in protein folding, Nature 294:532–536.PubMedGoogle Scholar
  86. Howell, E. E., Villafranca, I. E., Warren, M. S., Oatley, S. I., and Kraut, I., 1986, Functional role of aspartic acid-27 in dihydrofolate reductase revealed by mutagenesis, Science 231:1123–1128.PubMedGoogle Scholar
  87. Hurle, M. R., and Matthews, C. R., 1987, Proline isomerization and the slow folding reactions of the α subunit of tryptophan synthase from Escherichia coli, Biochim. Biophys. Acta 913:179–184.PubMedGoogle Scholar
  88. Hurle, M. R., Tweedy, N. B., and Matthews, C. R., 1986, Synergism in folding of a double mutant of the α subunit of tryptophan synthase, Biochemistry 25:6356–6360.PubMedGoogle Scholar
  89. Hurle, M. R., Matthews, C. R., Cohen, F. E., Kuntz, I. D., Toumadje, A., and Johnson, W. C., Jr., 1987, Prediction of the tertiary structure of the α-subunit of tryptophan synthase, Proteins 2:210–224.PubMedGoogle Scholar
  90. Hvidt, A., 1975, A discussion of pressure-volume effects in aqueous protein solutions, J. Theor. Biol. 50:245–252.PubMedGoogle Scholar
  91. Ihara, S., Ooi, T., and Takahashi, S., 1982, Effects of salts on the nonequivalent stability of the α-helices of isomeric block copolypeptides, Biopolymers 21:131–145.Google Scholar
  92. Illuminati, G., and Mandolini, L., 1981, Ring closure reactions of bifunctional chain molecules, Acc. Chem. Res. 14:95–102.Google Scholar
  93. Imanaka, T., Shibazaki, M., and Takagi, M., 1986, A new way of enhancing the thermostability of proteins, Nature 324:695–697.PubMedGoogle Scholar
  94. Janin, J., Wodak, S., Levitt, M., and Maigret, B., 1978, Conformation of amino acid side-chains in proteins, J. Mol. Biol. 125:357–386.PubMedGoogle Scholar
  95. Johnson, R. E., Adams, P., and Rupley, J. A., 1978, Thermodynamics of protein crosslinks, Biochemistry 17: 1479–1484.PubMedGoogle Scholar
  96. Kauzmann, W., 1959, Some factors in the interpretation of protein denaturation, Adv. Protein Chem. 14: 1–63.PubMedGoogle Scholar
  97. Kendrew, J. C., Bodo, G., Dintzis, H. M., Parrish, R. G., Wyckoff, H., and Phillips, D. C., 1958, A three-dimensional model of the myoglobin molecule obtained by x-ray analysis, Nature 181:662–666.PubMedGoogle Scholar
  98. Kendrew, J. C., Dickerson, R. E., Strandberg, B. E., Hart, R. G., Davies, D. R., Phillips, D. C., and Shore, V. C., 1960, Structure of myoglobin, Nature 185:422–437.PubMedGoogle Scholar
  99. Kendrew, J. C., Watson, H. C., Strandberg, B. E., Dickerson, R. E., Phillips, D. C., and Shore, V. C., 1961, A partial determination by x-ray methods, and its correlation with chemical data, Nature 190:666–670.PubMedGoogle Scholar
  100. Kim, P. S., and Baldwin, R. L., 1982, Specific intermediates in the folding reactions of small proteins and the mechanism of protein folding, Annu. Rev. Biochem. 51:459–489.PubMedGoogle Scholar
  101. Kim, P. S., and Baldwin, R. L., 1984, A helix stop signal in the isolated S-peptide of ribonuclease A, Nature 307:329–334.PubMedGoogle Scholar
  102. Klapper, M. H., 1971, The nature of the protein interior, Biochim. Biophys. Acta 229:557–566.PubMedGoogle Scholar
  103. Klotz, I. M., and Franzen, J. S., 1962, Hydrogen bonds between model peptide groups in solution, J. Am. Chem. Soc. 84:3461–3466.Google Scholar
  104. Kyte, J., and Doolittle, R. F., 1982, A simple method-for displaying the hydropathic character of a protein, J. Mol. Biol. 157: 105–132.PubMedGoogle Scholar
  105. Labhart, A. M., 1982, Secondary structure in ribonuclease I. Equilibrium folding transitions seen by amide circular dichroism, J. Mol. Biol. 157:331–355.Google Scholar
  106. Lawrence, C., Auger, I., and Mannella, C., 1987, Distribution of accessible surface areas of amino acids in globular proteins, Proteins 2:153–167.PubMedGoogle Scholar
  107. Lee, B., 1985, The physical origin of the low solubility of nonpolar solutes in water, Biopolymers 24:813–823.PubMedGoogle Scholar
  108. Lesk, A. M., and Chothia, C., 1980, Solvent accessibility, protein surfaces, and protein folding, Biophys. J. 32: 35–37.PubMedGoogle Scholar
  109. Levitt, M., and Warshel, A., 1975, Computer simulation of protein folding, Nature 253:694–698.PubMedGoogle Scholar
  110. Lewis, P. N., Go, N., Go, M., Kotelchuck, D., and Scheraga, H. A., 1970, Helix probability profiles of denatured proteins and their correlation with native structures, Proc. Nat. Acad. Sci. U.S.A. 65:810–815.Google Scholar
  111. Liao, H., McKenzie, T., and Hageman, R., 1986, Isolation of a thermostable enzyme variant by cloning and selection in a thermophile, Proc. Natl. Acad. Sci. U.S.A. 83:576–580.PubMedGoogle Scholar
  112. Lin, S. H., Konishi, Y., Denton, M. E., and Scheraga, H. A., 1984, Influence of an extrinsic crosslink on the folding pathway of ribonuclease A. Conformational and thermodynamic analysis of cross-linked (lysine7-lysine41 )-ribonuclease A, Biochemistry 23:5504–5512.PubMedGoogle Scholar
  113. Lin, S. H., Konishi, Y., Nall, B. T., and Scheraga, H. A., 1985, Influence of an extrinsic cross-link on the folding pathway of ribonuclease A. Kinetics of folding-unfolding, Biochemistry 24:2680–2686.PubMedGoogle Scholar
  114. Loftus, D., Gbenle, G. O., Kim,. P. S., and Baldwin, R. L., 1986, Effects of denaturants on amide protein exchange rates: A test for structures in protein fragments and folding intermediates, Biochemistry 25: 1428–1436.PubMedGoogle Scholar
  115. Luisi, B. F., and Nagai, K., 1986, Crystallographic analysis of mutant haemoglobins made in Escherichia coli, Nature 320:555–556.PubMedGoogle Scholar
  116. Macgregor, R. B., and Weber, G., 1986, Estimation of the polarity of the protein interior by optical spectroscopy, Nature 319:70–73.PubMedGoogle Scholar
  117. Marqusee, S., and Baldwin, R. L., 1987, Helix stabilization by Glu-Lys salt bridges in short peptides of de novo design, Proc. Natl. Acad. Sci. U.S.A. 84:8898–8902.PubMedGoogle Scholar
  118. Matsumura, M., and Aiba, S., 1985, Screening for thermostable mutant of kanamycin nucleotidyl transferase by the use of a transformation system for a thermophile, Bacillus stearothermophilus, J. Biol. Chem. 260: 15298–15303.Google Scholar
  119. Matsumura, M., Yasumura, S., and Aiba, S., 1986, Cumulative effect of intragenic amino acid replacements on the thermostability of a protein, Nature 323:356–358.PubMedGoogle Scholar
  120. Matsumura, M., Yahanda, S., and Aiba, S., 1988, Site-directed mutagenesis: Role of tyrosine 80 in thermal stabilization of kanamycin nucleotidyltransferase, Eur. J. Biochem. 171:715–720.PubMedGoogle Scholar
  121. Matthew, J. B., 1985, Electrostatic effects in proteins, Annu. Rev. Biophys. Biophys. Chem. 14:387–417.PubMedGoogle Scholar
  122. Matthews, B. W., 1987, Genetic and structural analysis of the protein stability problem, Biochemistry 26:6885–6888.PubMedGoogle Scholar
  123. Matthews, B. W., Nicholson, H., and Becktel, W. J., 1987, Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding, Proc. Natl. Acad. Sci. U.S.A. 84:6663–6667.PubMedGoogle Scholar
  124. Matthews, C. R., and Hurle, M. R., 1987, Mutant sequences as probes of protein folding mechanisms, Bioessays 6:254–257.PubMedGoogle Scholar
  125. Matthews, C. R., and Westmoreland, D. G., 1975, Nuclear magnetic resonance studies of residual structure in thermally unfolded ribonuclease A, Biochemistry 14:4532–4538.PubMedGoogle Scholar
  126. Matthews, C. R., Crisanti, M. M., Gepner, G. L., Velicelebi, G., and Sturtevant, J. M., 1980, Effect of single amino acid substitutions on the thermal stability of the α subunit of tryptophan synthase, Biochemistry 19: 1290–1293.PubMedGoogle Scholar
  127. Matthews, C. R., Crisanti, M. M., Manz, J. T., and Gepner, G. L., 1983, Effect of a single amino acid substitution on the folding of the α subunit of tryptophan synthase, Biochemistry 22:1445–1452.PubMedGoogle Scholar
  128. Miller, J. H., 1984, Genetic studies of the lac repressor XII. Amino acid replacements in the DNA binding domain of the Escherichia coli lac repressor, J. Mol. Biol. 180:205–212.PubMedGoogle Scholar
  129. Miller, J. H., and Schmeissner, V., 1979, Genetic studies of the lac repressor X. Analysis of missense mutations in the lacl gene, J. Mol. Biol. 131:223–248.PubMedGoogle Scholar
  130. Miller, J. H., Coulondre, C., Hofer, M., Schmeissner, V., Sommer, H., Schmitz, A., and Lu, P., 1979, Genetic studies of the lac repressor IX. Generation of altered proteins by the suppression of nonsense mutations, J. Mol. Biol. 131:191–222.PubMedGoogle Scholar
  131. Miller, S., Lesk, A. M., Janin, J., and Chothia, C., 1987, The accessible surface area and stability of oligomeric proteins, Nature 328:834–836.PubMedGoogle Scholar
  132. Mitchinson. C., and Baldwin. R. L., 1986, The design and production of semisynthetic ribonucleases with increased thermostability by incorporation of S-peptide analogues with enhanced helical stability, Proteins 1:23–33.PubMedGoogle Scholar
  133. Moult, J., and James, M. N. G., 1986, An algorithm for determining the conformation of polypeptide segments in proteins by systematic search, Proteins 1: 146–163.PubMedGoogle Scholar
  134. Mutter, M., 1977, Macrocyclization equilibria of polypeptides, J. Am. Chem. Soc. 99:8307–8314.Google Scholar
  135. Nagai, K., Luisi, B., Shih, D., Miyazaki, G., Imai, K., Poyart, C., DeYoung, A., Kwiatkowski, L., Noble, R. W., Lin, S.-H., and Yu, N.-T., 1987, Distal residues in the oxygen binding site of haemoglobin studied by protein engineering, Nature 329:858–860.PubMedGoogle Scholar
  136. Narayana, S. V. L., and Argos, P., 1984, Residue contacts in protein structures and implications for protein folding, Int. J. Peptides 24:25–39.Google Scholar
  137. Nemethy, G., Leach, S. J., and Scheraga, H. A., 1966, The influence of amino acid side chains on the free energy of helix-coil transitions, J. Phys. Chem. 70:998–1004.Google Scholar
  138. Novotny, J., Bruccoleri, R., and Karplus, M., 1984, An analysis of incorrectly folded protein models, J. Mol. Biol. 177:787–818.PubMedGoogle Scholar
  139. Nozaki, Y., and Tanford, C., 1971, The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions, J. Biol. Chem. 246:2211–2217.PubMedGoogle Scholar
  140. Pabo, C. O., and Suchanek, E. G., 1986, Computer-aided model-building strategies for protein design, Biochemistry 25:5987–5991.PubMedGoogle Scholar
  141. Pace, C. N., 1975, The stability of globular proteins, CRC Crit. Rev. Biochem. 3:1–43.PubMedGoogle Scholar
  142. Page, M. I., 1984, The energetics and specificity of enzyme-substrate interactions, in: The Chemistry of Enzyme Action (M. I. Page, ed.), Elsevier, Amsterdam, pp. 1–54.Google Scholar
  143. Page, M. I., and Jencks, W. P., 1971, Entropic contributions to rate accelerations in enzymic and intramolecular reactions and the chelate effect, Proc. Natl. Acad. Sci. U.S.A. 68:1678–1683.PubMedGoogle Scholar
  144. Pakula, A. A., Young, V. B., and Sauer, R. T., 1986, Bacteriophage λ cro mutations: Effects on activity and intracellular degradation, Proc. Natl. Acad. Sci. U.S.A. 83:8829–8833PubMedGoogle Scholar
  145. Pantoliano, M. W., Ladner, R. C., Bryan, P. N., Rollence, M. L., Wood, J. F., and Poulos, T. L., 1987, Protein engineering of subtilisin BPN’: Enhanced stabilization through the introduction of two cysteines to form a disulfide bond, Biochemistry 26:2077–2082.PubMedGoogle Scholar
  146. Perry, K. M., Onuffer, J. J., Touchette, N. A., Herndon, C. S., Gittelman, M. S., Matthews, C. R., Chan, J.T., Mayer, R. J., Taira, K., Benkovic, S. J., Howell, E. E., and Kraut, J., 1987, Effect of single amino acid replacements on the folding and stability of dihydrofolate reductase from Escherichia coli, Biochemistry 26:2674–2682.PubMedGoogle Scholar
  147. Perry, L. J., and Wetzel, R., 1984, Disulfide bond engineered into T4 lysozyme: Stabilization of the protein toward thermal inactivation, Science 226:555–557.PubMedGoogle Scholar
  148. Perutz, M. F., 1964, The hemoglobin molecule, Sci. Am. 211(5):64–76.PubMedGoogle Scholar
  149. Perutz, M. F., 1978, Electrostatic effects in proteins, Science 201:1187–1191.PubMedGoogle Scholar
  150. Perutz, M. F., and Lehmann, H., 1968, Molecular pathology of human haemoglobin, Nature 219:902–909.PubMedGoogle Scholar
  151. Perutz, M. F., and Raidt, H., 1975, Stereochemical basis of heat stability in bacterial ferredoxins and in haemoglobin A2, Nature 255:256–259.PubMedGoogle Scholar
  152. Perutz, M. F., Kendrew, J. C., and Watson, H. C., 1965, Structure and function of haemoglobin 2. Some relations between polypeptide chain configuration and amino acid sequence, J. Mol. Biol. 13:669–678.Google Scholar
  153. Petsko, G. A., and Ringe, D., 1984, Fluctuations in protein structure from X-ray diffraction, Annu. Rev. Biophys. Bioeng. 13:331–371.PubMedGoogle Scholar
  154. Pflugrath, J. W., and Quiocho, F. A., 1985, Sulphate sequestered in the sulphate-binding protein of Salmonella typhimurium is bound solely by hydrogen bonds, Nature 341:257–260.Google Scholar
  155. Ponder, J. W., and Richards, 1987, Tertiary templates for proteins, J. Mol. Biol. 193:775–791.PubMedGoogle Scholar
  156. Privalov, P. L., 1979, Stability of proteins, Adv. Protein Chem. 33:167–241.PubMedGoogle Scholar
  157. Privalov, P. L., Griko, Y. V., Venyaminov, S. Y., and Kutyshenko, V. P., 1986, Cold denaturation of myoglobin, J. Mol. Biol. 190:487–498.PubMedGoogle Scholar
  158. Quiocho, F. A., Sack, J. S., and Vyas, N. K., 1987, Stabilization of charges on isolated ionic groups sequestered in proteins by polarized peptide units, Nature 329:561–564.PubMedGoogle Scholar
  159. Rashin, A. A., and Honig, B., 1984, On the environment of ionizable groups in globular proteins, J. Mol. Biol. 173:515–521.PubMedGoogle Scholar
  160. Rebek, J., Jr., 1987, Model studies in molecular recognition, Science 235:1478–1484.PubMedGoogle Scholar
  161. Richards, F. M., 1977, Areas, volumes, packing, and protein structure, Ann. Rev. Biophys. Bioeng. 6:151–176.Google Scholar
  162. Richardson, J. S., 1981, The anatomy and taxonomy of protein structure, Adv. Protein Chem. 34:167–339.PubMedGoogle Scholar
  163. Rico, M., Santoro, J., Bermejo, F. J., Herranz, J., Nieto, J. L., Gallego, E., and Jimenez, M. A., 1986, Thermodynamic parameters for the helix-coil thermal transition of ribonuclease S-peptide and derivatives from 1H-NMR data, Biopolymers 25:1031–1053.PubMedGoogle Scholar
  164. Roder, H., Wagner, G., and Wüthrich, K., 1985, Individual amide proton exchange rates in thermally unfolded basic pancreatic trypsin inhibitor, Biochemistry 24:7407–7411.PubMedGoogle Scholar
  165. Rogers, N. K., and Sternberg, M. J. E., 1984, Electrostatic interactions in globular proteins: Different dielectric models applied to the packing of α-helices, J. Mol. Biol. 174:527–542.PubMedGoogle Scholar
  166. Rose, G. D., Geselowitz, A. R., Lesser, G. J., Lee, R. H., and Zehfus, M. H., 1985, Hydrophobicity of amino-acid residues in globular proteins, Science 229:834–838.PubMedGoogle Scholar
  167. Russell, S. T., and Warshel, A., 1985, Calculations of electrostatic energies in proteins, J. Mol. Biol. 185:389–404.PubMedGoogle Scholar
  168. Sauer, R. T., Hehir, K., Stearman, R. S., Weiss, M. A., Jeitler-Nilsson, A., Suchanek, E. G., and Pabo, C. O., 1986, An engineered intersubunit disulfide enhances the stability and DNA binding of the N-terminal domain of λ repressor, Biochemistry 25:5992–5998PubMedGoogle Scholar
  169. Schellman, J. A., 1955a, The thermodynamics of urea solutions and the heat of formation of the peptide hydrogen bonds, C. R. Lab. Carlsberg Ser. Chim. 29:223–229.Google Scholar
  170. Schellman, J. A., 1955b, The stability of hydrogen-bonded peptide structures in aqueous solution, C. R. Lab. Carlsberg Ser. Chim. 29:230–259.Google Scholar
  171. Schellman, J. A., 1978, Solvent denaturation, Biopolymers 17:1305–1322.Google Scholar
  172. Schellman, J. A., 1987a, The thermodynamic stability of proteins, Annu. Rev. Biophys. Chem. 16:115–137.Google Scholar
  173. Schellman, J. A., 1987b, Selective binding and solvent denaturation, Biopolymers 26:549–559.PubMedGoogle Scholar
  174. Schellman, J. A., Lindorfer, M., Hawkes, R., and Grütter, M., 1981, Mutations and protein stability, Biopolymers 20: 1989–1999.PubMedGoogle Scholar
  175. Scheraga, H. A., 1978, Use of random copolymers to determine the helix-coil stability constants of the naturally occurring amino acids, Pure Appl. Chem. 50:315–324.Google Scholar
  176. Scheraga, H. A., 1985, Effect of side chain-backbone electrostatic interactions on the stability of α-helices, Proc. Natl. Acad. Sci. U.S.A. 82:5585–5587.PubMedGoogle Scholar
  177. Sheridan, R. P., Levy, R. M., and Salemme, F. R., 1982, α-Helix dipole model and electrostatic stabilization of 4-α-helical proteins, Proc. Natl. Acad. Sci. U.S.A. 79:4545–4549.PubMedGoogle Scholar
  178. Shoemaker, K. R., Kim, P. S., Brems, D. N., Marqusee, S., York, E. J., Chaiken, I. M., Stewart, J. M., and Baldwin, R. L., 1985, Nature of the charged group effect on the stability of the C-peptide helix, Proc. Natl. Acad. Sci. U.S.A. 82:2349–2353.PubMedGoogle Scholar
  179. Shoemaker, K. R., Kim, P. S., York, E. J., Stewart, J. M., and Baldwin, R. L., 1987, Tests of the helix dipole model for stabilization of α-helices, Nature 326:563–567.PubMedGoogle Scholar
  180. Shortle, D., and Lin, B., 1985, Genetic analysis of staphylococcal nuclease: Identification of three intragenic “global” suppressors of nucelase-minus mutations, Genetics 110:539–555.PubMedGoogle Scholar
  181. Shortle, D., and Meeker, A. K., 1986, Mutant forms of staphylococcal nuclease with altered patterns of guanidine hydrochloride and urea denaturation, Proteins 1:81–89.PubMedGoogle Scholar
  182. Smith, J. L., Hendrickson, W. A., Honzatko, R. B., and Sheriff, S., 1986, Structural heterogeneity in protein crystals, Biochemistry 25:5018–5027.PubMedGoogle Scholar
  183. Snow, M. E., and Amzel, L. M., 1986, Calculating three-dimensional changes in protein structure due to amino acid substitutions: The variable region of immunoglobulins, Proteins 1:267–279.PubMedGoogle Scholar
  184. Springs, B., and Haake, P., 1977, Equilibrium constants for association of guanidinium and ammonium ions with oxyanions, Bioorg. Chem. 6:181–190.Google Scholar
  185. Stahl, N., and Jencks, W. P., 1986, Hydrogen bonding between solutes in aqueous solution, J. Am. Chem. Soc. 108:4196–4205.Google Scholar
  186. States, D. J., Creighton, T. E., Dobson, C. M., and Karplus, M., 1987, Conformations of intermediates in the folding of the pancreatic trypsin inhibitor, J. Mol. Biol. 195:731–739.PubMedGoogle Scholar
  187. Sternberg, M. J. E., Hayes, F. R. F., Russell, A. J., Thomas, P. G., and Fersht, A. R., 1987, Prediction of electrostatic effects of engineering of protein charges, Nature 330:86–88.PubMedGoogle Scholar
  188. Streisinger, G., Mukai, F., Dreyer, W. J., Miller, B., and Horiuchi, S., 1961, Mutations affecting the lysozyme of phage T4, Cold Spring Harbor Symp. Quant. Biol. 26:25–30.PubMedGoogle Scholar
  189. Sturtevant, J. M., 1977, Heat capacity and entropy changes in processes involving proteins, Proc. Natl. Acad. Sci. U.S.A. 74:2236–2240.PubMedGoogle Scholar
  190. Sturtevant, J. M., 1987, Biochemical applications of differential scanning calorimetry, Annu. Rev. Phys. Chem. 38:463–488.Google Scholar
  191. Sueki, M., Lee, S., Powers, S. P., Denton, J. B., Konishi, Y., and Scheraga, H. A., 1984, Helix-coil stability constants for the naturally occurring amino acids in water, Macromolecules 17:148–155.Google Scholar
  192. Susi, H., Timasheff, S. N., and Ard, J. S., 1964, Near infrared investigation of inter amide hydrogen bonding in aqueous solution, J. Biol. Chem. 239:3051–3054.PubMedGoogle Scholar
  193. Svensson, L. A., Sjölin, L., Gilliland, G. L., Finzel, B. C., and Wlodawer, A., 1986, Multiple conformations of amino acid residues in ribonuclease A, Proteins 1:370–375.PubMedGoogle Scholar
  194. Tanford, C., 1954, The association of accetate with ammonium and guanidinium ions, J. Am. Chem. Soc. 76: 945–946.Google Scholar
  195. Tanford, C., 1962, Contribution of hydrophobic interactions to the stability of the globular conformation of proteins, J. Am. Chem. Soc. 84:4240–4247.Google Scholar
  196. Tanford, C., 1968, Protein denaturation, Adv. Protein Chem. 23:121–282.PubMedGoogle Scholar
  197. Tanford, C., 1970, Protein denaturation Part C. Theoretical models for the mechanism of denaturation, Adv. Protein Chem. 24:1–95.PubMedGoogle Scholar
  198. Tanford, C., 1980, The Hydrophobic Effect: Formation of Micelles and Biological Membranes, John Wiley & Sons, New York.Google Scholar
  199. Thomas, P. G., Russell, A. J., and Fersht, A. R., 1985, Tailoring the pH dependence of enzyme catalysis using protein engineering, Nature 318:375–376.Google Scholar
  200. Thornton, J. M., 1982, Electrostatic interactions in proteins, Nature 295:13–14.PubMedGoogle Scholar
  201. Ueda, Y., and Go, N., 1976, Theory of large-amplitude conformational fluctuations in native globular proteins, Int. J. Peptides 8:551–558.Google Scholar
  202. Villafranca, J. E., Howell, E. E., Oatley, S. J., Xuong, N.-H., and Kraut, J., 1987, An engineered disulfide bond in dihydrofolate reductase, Biochemistry 26:2182–2189.PubMedGoogle Scholar
  203. Wada, A., 1976, The α-helix as an electric macrodipole, Adv. Biophys. 9:1–63.Google Scholar
  204. Wada, A., and Nakamura, H., 1981, Nature of the charge distribution in proteins, Nature 293:757–758.PubMedGoogle Scholar
  205. Wagner, G., Kalb, A. J., and Wüthrich, K., 1979, Conformational studies by 1H nuclear magnetic resonance of the basic pancreatic trypsin inhibitor after reduction of the disulfide bond between Cys-14 and Cys-38, Eur. J. Biochem. 95:249–253.PubMedGoogle Scholar
  206. Warshel, A., 1987, What about protein polarity? Nature 330:15–16.PubMedGoogle Scholar
  207. Warshel, A., and Russell, S. T., 1984, Calculations of electrostatic interactions in biological systems and in solutions, Q. Rev. Biophys. 17:282–422.Google Scholar
  208. Weber, P. C., Sheriff, S., Ohlendorf, D. H., Finzel, B. C., and Salemme, F. R., 1985, The 2Å resolution structure of a thermostable ribonuclease A chemically cross-linked between lysine residues 7 and 41, Proc. Natl. Acad. Sci. U.S.A. 82:8473–8477.PubMedGoogle Scholar
  209. Wells, J. A., and Powers, D. B., 1986, In vivo formation and stability of engineered disulfide bonds in subtilisin, J. Bioi. Chem. 261:6564–6570.Google Scholar
  210. Wetzel, R., Perry, L. J., Baase, W. A., and Becktel, W. J., 1988, Disulfide bonds and thermal stability in T4 lysozyme, Proc. Natl. Acad. Sci. U.S.A. 85:401–405.PubMedGoogle Scholar
  211. Wishnia, A., 1963, The hydrophobic contribution to micelle formation: The solubility of ethane, propane, butane, and pentane in sodium dodecyl sulfate solution, J. Phys. Chem. 67:2079–2082.Google Scholar
  212. Wolfenden, R., Andersson, L., Cullis, P. M., and Southgate, C. C. B., 1981, Affinities of amino acid side chains for solvent water, Biochemistry 20:849–855.PubMedGoogle Scholar
  213. Yutani, K., Ogasahara, K., Aoki, K., Kakuno, T., and Sugino, Y., 1984, Effect of amino acid residues on conformational stability in eight mutant proteins variously substituted at a unique position of the trp synthase α-subunit, J. Bioi. Chem. 259:14076–14081.Google Scholar
  214. Yutani, K., Ogasahara, K., Tsujita, T., and Sugino, T., 1987, Dependence of conformational stability on hydrophobicity of the amino acid residue in a series of variant proteins substituted at a unique position of tryptophan synthase α subunit, Proc. Natl. Acad. Sci. U.S.A. 84:4441–4444.PubMedGoogle Scholar
  215. Zimm, B. H., and Bragg, J. K., 1959, Theory of the phase transition between helix and random coil in polypeptide chains, J. Chem. Phys. 31:526–535.Google Scholar
  216. Zipp, A., and Kauzmann, W., 1973, Pressure denaturation of metmyoglobin, Biochemistry 12:4217–4228.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Tom Alber
    • 1
  1. 1.Department of BiochemistryUniversity of Utah School of MedicineSalt Lake CityUSA

Personalised recommendations