Structure Prediction for Membrane Proteins

  • Fritz Jähnig


To predict the secondary structure of soluble proteins several schemes are available (see other chapters in this book). Most of them are variations and extensions of the same principle developed by Chou and Fasman (1974). To each amino acid residue one attributes a potential for α-helix, β-strand, and β-turn conformation, which has been deduced from proteins of known three-dimensional structure. For a protein of unknown structure, the profiles of the three potentials along the amino acid sequence are compared to predict the secondary structure. The predictive power of such an analysis is limited, but in many cases this is the sole piece of structural information available.


Membrane Plane Amphipathic Helix Hydrophobic Moment Lactose Permease Helical Wheel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Argos, P., Rao, J. K. M., and Hargrave, P. A., 1982, Structural prediction of membrane-bound proteins, Eur. J. Biochem. 128:565–575.PubMedCrossRefGoogle Scholar
  2. Carrasco, N., Antes, L. M., Poonian, M. S., and Kaback, H. R., 1986, Lac permease of Escherichia coli: Histidine-322 and glutamic acid-325 may be components of a charge-relay system, Biochemistry 25:4486–4488.PubMedCrossRefGoogle Scholar
  3. Chou, P. Y., and Fasman, G. D., 1974, Prediction of protein conformation, Biochemistry 13:222–245.PubMedCrossRefGoogle Scholar
  4. Chou, P. Y., and Fasman, G. D., 1978, Empirical predictions of protein conformation, Annu. Rev. Biochem. 47:251–276.PubMedCrossRefGoogle Scholar
  5. Deisenhofer, J., Epp, O., Miki, K., Huber, R., and Michel, H., 1985, Structure of the protein subunit in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3 Å resolution, Nature 318:618–624.CrossRefGoogle Scholar
  6. Dornmair, K., Corin, A. F., Wright, J. K., and Jähnig, F., 1985, The size of the lactose permease derived from rotational diffusion measurements, EMBO J. 4:3633–3638.PubMedGoogle Scholar
  7. Eisenberg, D., Weiss, R. M., and Terwilliger, T. C., 1982, The helical hydrophobic moment: A measure of the amphiphilicity of a helix, Nature 299:371–374.PubMedCrossRefGoogle Scholar
  8. Eisenberg, D., Weiss, R. M., and Terwilliger, T. C., 1984, The hydrophobic moment detects periodicity in protein hydrophobicity, Proc. Natl. Acad. Sci. U.S.A. 81:140–144.PubMedCrossRefGoogle Scholar
  9. Finer-Moore, J., and Stroud, R. M., 1984, Amphipathic analysis and possible formation of the ion channel in an acetylcholine receptor, Proc. Natl. Acad. Sci. U.S.A. 81:155–159.PubMedCrossRefGoogle Scholar
  10. Fox, R. O., and Richards, F. M., 1982, A voltage-gated ion channel model inferred from the crystal structure of alamethicin at 1.5-Å resolution, Nature 300:325–330.PubMedCrossRefGoogle Scholar
  11. Green, N. M., and Flanagan, M. T., 1976, The prediction of the conformation of membrane proteins from the sequence of amino acids, Biochem. J. 153:729–732.PubMedGoogle Scholar
  12. Henderson, R., and Unwin, P. N. T., 1975, Three-dimensional model of purple membrane obtained by electron microscopy, Nature 257:28–32.PubMedCrossRefGoogle Scholar
  13. Hopp, T. P., and Woods, K. R., 1983, Prediction of protein antigenic determinants from amino acid sequences, Proc. Natl. Acad. Sci. U.S.A. 78:3824–3828.CrossRefGoogle Scholar
  14. Janin, J., 1979, Surface and inside volumes in globular proteins, Nature 277:491–492.PubMedCrossRefGoogle Scholar
  15. Kennedy, S. J., 1978, Structures of membrane proteins, J. Membr. Biol. 42:265–279.PubMedCrossRefGoogle Scholar
  16. Kyte, J., and Doolittle, R. F., 1982, A simple method for displaying the hydropathic character of a protein, J. Mol. Biol. 157:105–132.PubMedCrossRefGoogle Scholar
  17. Lim, V. I., 1974, Structural principles of the globular organization of protein chains. A stereochemical theory of globular protein secondary structure, J. Mol. Biol. 88:857–872.PubMedCrossRefGoogle Scholar
  18. Michel, H., Weyer, K. A., Gruenberg, H., Dunger, I., Oesterhelt, D., and Lottspeich, F., 1986, The “light” and “medium” subunits of the photosynthetic reaction centre from Rhodopseudomonas viridis: Isolation of the genes, nucleotide and amino acid sequence, EMBO J. 5:1149–1158.PubMedGoogle Scholar
  19. Morona, R., Krämer, C., and Henning, U., 1985, Bacteriophage receptor area of outer membrane protein OmpA of Escherichia coli K-12, J. Bacteriol. 164:539–543.PubMedGoogle Scholar
  20. Riede, I., Schwarz, H., and Jähnig, F., 1987, Predicted structure of tail-fiber proteins of T-even type phages, FEBS Lett. 215:145–150.PubMedCrossRefGoogle Scholar
  21. Schiffer, M., and Edmundson, A. B., 1967, Use of helical wheels to represent the structures of protein and to identify segments with helical potential, Biophys. J. 7:121–135.PubMedCrossRefGoogle Scholar
  22. Tomita, M., and Marchesi, V. T., 1975, Amino-acid sequence and oligosaccharide attachment sites of human erythrocyte glycophorin, Proc. Natl. Acad. Sci. U.S.A. 72:2964–2968.PubMedCrossRefGoogle Scholar
  23. Trewhella, J., Anderson, S., Fox, R., Gogol, E., Khan, S., and Engelman, D., 1983, Assignment of segments of the bacteriorhodopsin sequence to positions in the structural map, Biophys. J., 42:233–241.PubMedCrossRefGoogle Scholar
  24. Urry, D. W., 1971, The gramicidin A transmembrane channel: A proposed πL.D helix, Proc. Natl. Acad. Sci. U.S.A. 68:672–676.PubMedCrossRefGoogle Scholar
  25. Vogel, H., and Jähnig, F., 1986a, Models for the structure of outer-membrane proteins of Escherichia coli derived from Raman spectroscopy and prediction methods, J. Mol. Biol. 190:191–199.PubMedCrossRefGoogle Scholar
  26. Vogel, H., and Jähnig, F., 1986b, The structure of melittin in membranes, Biophys. J. 50:573–582.PubMedCrossRefGoogle Scholar
  27. Vogel, H., Wright, J. K., and Jähnig, F., 1985, The structure of the lactose permease derived from Raman spectroscopy and prediction methods, EMBO J. 4:3625–3631.PubMedGoogle Scholar
  28. Wallace, B. A., Cascio, M., and Mielke, D. L., 1986, Evaluation of methods for the prediction of membrane protein secondary structure, Proc. Natl. Acad. Sci. U.S.A. 83:9423–9427.PubMedCrossRefGoogle Scholar
  29. Wilson, I. A., Skehel, J. J., and Wiley, D. C., 1981, Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution, Nature 289:366–373.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Fritz Jähnig
    • 1
  1. 1.Max Planck Institute for BiologyTübingenWest Germany

Personalised recommendations