Advertisement

Is Bacillus an Alternative Expression System?

  • Jeffery Errington
  • Andrew Mountain

Abstract

In this review we consider the possible use of Bacillus subtilis as a host for the production of heterologous proteins. There are several potential advantages to be gained from the use of this organism, particularly its efficient secretion of proteins into the growth medium. Although it is unlikely to become the first choice host for the production of certain types of protein, for example potentially therapeutic mammalian proteins, which often undergo specific and necessary post-translation modifications, there are certainly some important groups of proteins, for example industrial enzymes, for which the Bacilli are already heavily used. The market for such enzymes is likely to grow very rapidly as recombinant DNA methods allow for the production of proteins from diverse and often little characterised microorganisms. Exploitation of these natural products will depend upon the development of versatile and robust expression systems, and there is growing evidence that Bacillus will be a useful system. On the other hand, Bacillus has certain undesirable properties as a host, such as the elaboration of proteases, which can cause loss of product by degradation. If such problems can be overcome, and in this review we assess the technical difficulties involved, then B. subtilis may turn out to be the host of choice for the production of many of the new industrial enzymes.

Keywords

Bacillus Subtilis Heterologous Protein Efficient Secretion Secretion Machinery Homologous Recombination Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Volesky, B. & Luong, J. H. T., Microbial enzymes: production, purification and isolation. CRC Crit. Rev. Biotechnol., 2 (1985) 119–46.CrossRefGoogle Scholar
  2. 2.
    Errington, J., Generalized cloning vectors for Bacillus subtilis. In Vectors: a Survey of Molecular Cloning Vectors and their Uses, ed. R. L. Rodriguez & D. T. Denhardt. Butterworths, Boston, 1988, pp. 345–62.Google Scholar
  3. 3.
    Bron, S. & Luxen, E., Segregational instability of pUB110-derived recombinant plasmids in Bacillus subtilis. Plasmid, 14 (1985) 235–44.PubMedCrossRefGoogle Scholar
  4. 4.
    te Riele, H., Michel, B. & Ehrlich, S. D., Single-stranded plasmid DNA in Bacillus subtilis and Staphylococcus aureus. Proc. Nat. Acad. Sci., USA, 83 (1986) 2541–5.CrossRefGoogle Scholar
  5. 5.
    Meselson, M. & Radding, C. M., A general model for genetic recombination. Proc. Nat. Acad. Sci., USA, 72 (1975) 358–61.CrossRefGoogle Scholar
  6. 6.
    Michel, B. & Ehrlich, S. D., Recombination is a quadratic function of the length of homology during plasmid transformation of Bacillus subtilis. EMBO J., 3 (1984) 2879–84.PubMedGoogle Scholar
  7. 7.
    Gruss, A. & Ehrlich, S. D., Insertion of foreign DNA into plasmids from Gram-positive bacteria induces formation of high-molecular-weight plasmid multimers. J. Bacteriol., 170 (1988) 1183–90.PubMedGoogle Scholar
  8. 8.
    Bron, S., Luxen, E. & Swart, P., Instability of recombinant pUB110 plasmids in Bacillus subtilis: plasmid-encoded stability function and effects of DNA inserts. Plasmid, 19 (1988) 231–41.PubMedCrossRefGoogle Scholar
  9. 9.
    McKenzie, T., Hoshino, T., Tanaka, T. & Sueoka, N., The nucleotide sequence of pUB110: some salient features in relation to replication and its regulation. Plasmid, 15 (1986) 93–103.PubMedCrossRefGoogle Scholar
  10. 10.
    Viret, J. F. & Alonso, J. C., Generation of linear multigenome-length plasmid molecules in Bacillus subtilis. Nucl. Acids Res., 15 (1987) 6349–67.PubMedCrossRefGoogle Scholar
  11. 11.
    Uozumi, T., Ozaki, A., Beppu, T. & Arima, K., New cryptic plasmid of Bacillus subtilis and restriction analysis of other plasmids found by general screening. J. Bacteriol., 142 (1980) 315–18.PubMedGoogle Scholar
  12. 12.
    Imanaka, T., Ano, T., Fujii, M. & Aiba, S., Two replication determinants of an antibiotic-resistance plasmid, pTB19, from a thermophilic Bacillus. J. Gen. Microbiol., 130 (1984) 1399–408.PubMedGoogle Scholar
  13. 13.
    Diderichsen, B., A genetic system for stabilization of cloned genes in Bacillus subtilis. Bacillus Molecular Genetics and Biotechnology applications, ed. A. T. Ganesan & J. A. Hoch. Academic Press, Orlando, 1986, pp. 35–46.Google Scholar
  14. 14.
    Bron, S., Bosma, P., Belkum, M. Van & Luxen, E., Stability function in the Bacillus subtilis plasmid pTA1060. Plasmid, 18 (1987) 8–15.PubMedCrossRefGoogle Scholar
  15. 15.
    Chang, S., Chang, S.-Y. & Gray, O., Structural and genetic analysis of a par locus that regulates plasmid partitioning in Bacillus subtilis. J. Bacteriol., 169 (1987) 3952–62.PubMedGoogle Scholar
  16. 16.
    Errington, J., A general method for fusion of the Escherichia coli lacZ gene to chromosomal genes in Bacillus subtilis. J. Gen. Microbiol., 132 (1988) 2953–66.Google Scholar
  17. 17.
    Niaudet, B., Janniere, L. & Ehrlich, S. D., Integration of linear, heterologous DNA molecules into the Bacillus subtilis chromosome: mechanism and use in induction of predictable rearrangements. J. Bacteriol., 163 (1985) 111–20.PubMedGoogle Scholar
  18. 18.
    Duncan, C. H., Wilson, G. A. & Young, F. E., Mechanism of integrating foreign DNA during transformation of Bacillus subtilis. Proc. Nat. Acad. Sci., USA, 75 (1975)3664–8.CrossRefGoogle Scholar
  19. 19.
    Albertini, A. M. & Galizzi, A., Amplification of a chromosomal region in Bacillus subtilis. J. Bacteriol., 162 (1985) 1203–11.PubMedGoogle Scholar
  20. 20.
    Janniere, L., Niaudet, B., Pierre, E. & Ehrlich, S. D., Stable gene amplification in the chromosome of Bacillus subtilis. Gene, 40 (1985) 47–55.PubMedCrossRefGoogle Scholar
  21. 21.
    Young, M., Gene amplification in Bacillus subtilis. J. Gen. Microbiol., 130 (1984) 1613–21.PubMedGoogle Scholar
  22. 22.
    Young, M. & Hranueli, D., Chromosomal gene amplification in Gram-positive bacteria. In Recombinant DNA and Bacterial Fermentation, ed. J. A. Thompson. CRC, Boca Raton, Florida 1988, pp. 157–200.Google Scholar
  23. 23.
    Joyet, P., Levin, D., de Louvencourt, L., Le Reverent, B., Heslot, H. & Aymerich, S., Expression of thermostable alpha-amylase gene under the control of levansucrase inducible promoter from Bacillus subtilis. In Bacillus Molecular Genetics and Biotechnology Applications, ed. A. T. Ganesan & J. A. Hoch. Academic Press, Orlando, 1986, pp. 479–91.Google Scholar
  24. 24.
    Kallio, P., Palva, A. & Palva, I., Enhancement of α-amylase production by integrating and amplifying the α-amylase gene of Bacillus amyloliquefaciens in the genome of Bacillus subtilis. Appl. Microbiol Biotechnol., 27 (1987) 64–71.CrossRefGoogle Scholar
  25. 25.
    Ruppen, M., Band, L. & Henner, D. J., Efficient expression of human growth hormone in Bacillus subtilis. In Bacillus Molecular Genetics and Biotechnology Applications, ed. A. T. Ganesan & J. A. Hoch. Academic Press, Orlando, 1986, pp. 423–32.Google Scholar
  26. 26.
    Dhaese, P., Hussey, C. & Van Montagu, M., Thermo-inducible gene expression in Bacillus subtilis using transcriptional regulatory elements from temperate phage φ105. Gene, 32 (1984) 181–94.PubMedCrossRefGoogle Scholar
  27. 27.
    Van Kaer, L., Van Montagu, M. & Dhaese, P., Transcriptional control in the EcoRI-F immunity region of Bacillus subtilis phage φ105. J. Molec. Biol., 197 (1987) 55–67.PubMedCrossRefGoogle Scholar
  28. 28.
    Klier, A. F. & Rapoport, G., Genetics and regulation of carbohydrate catabolism in Bacillus. Ann. Rev. Microbiol., 42 (1988) 65–95.CrossRefGoogle Scholar
  29. 29.
    Zukowski, M. M. & Miller, L., Hyperproduction of an intracellular heterologous protein in a sacU h mutant of Bacillus subtilis. Gene, 46 (1986) 247–55.PubMedCrossRefGoogle Scholar
  30. 30.
    Priest, F. G., Extracellular Enzymes, Van Nostrand Reinhold (UK) Co. Ltd, Wokingham, Berkshire, UK, 1984.Google Scholar
  31. 31.
    Fahnestock, S. R. & Fisher, K E., Expression of the Staphylococcal protein A gene in Bacillus subtilis by gene fusions using the promoter from a Bacillus amyloliquefaciens α-amylase gene. J. Bacteriol., 165 (1986) 796–804.PubMedGoogle Scholar
  32. 32.
    Kovacevic, S., Veal, L. E., Hsiung, H. M. & Miller, J. R., Secretion of staphylococcal nuclease by Bacillus subtilis. J. Bacteriol., 162 (1985) 521–8.PubMedGoogle Scholar
  33. 33.
    Soutschek-Bauer, E. & Staudenbauer, W. L., Synthesis and secretion of a heat-stable carboxymethylcellulase from Clostridium thermocellum in Bacillus subtilis. Mol. Gen. Genet., 208 (1987) 537–41.PubMedCrossRefGoogle Scholar
  34. 34.
    Wang, P.-Z., Projan, S. J., Leason, K. R. & Novick, R. P., Translational fusion with a secretory enzyme as an indicator. J. Bacteriol., 169 (1987) 3082–7.PubMedGoogle Scholar
  35. 35.
    Von Heinje, G., Patterns of amino acids near signal-sequence cleavage sites. Eur. J. Biochem., 133 (1983) 17–21.CrossRefGoogle Scholar
  36. 36.
    Watson, M. E. E., Compilation of published signal sequences. Nucl. Acids Res., 13 (1984) 5145–64.CrossRefGoogle Scholar
  37. 37.
    Takase, K, Mizuno, H. & Yamane, K, NH2-terminal processing ofBacillus subtilis α-amylase. J. Biol. Chem., 263 (1988) 11548–53.PubMedGoogle Scholar
  38. 38.
    Palva, I., Molecular cloning of α-amylase gene from Bacillus amyloliquefaciens and its expression in B. subtilis. Gene, 19 (1982) 81–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Shiroza, T., Nakazawa, K., Tashiro, T., Yamane, K., Yanagi, K., Yamasaki, M., Tamura, G., Saito, H., Kawade, Y. & Taniguchi, T., Synthesis and secretion of biologically active mouse interferon-ß using a Bacillus subtilis α-amylase secretion vector. Gene, 34 (1985) 1–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Vasantha, N. & Thompson, L. D., Secretion of a heterologous protein from Bacillus subtilis with the aid of protease signal sequences. J. Bacteriol., 165 (1986) 837–42.PubMedGoogle Scholar
  41. 41.
    Wong, S.-L., Kawamura, F. & Doi, R. H., Use of the Bacillus subtilis subtilisin signal peptide for efficient secretion of TEM ß-lactamase during growth. J. Bacteriol., 168 (1986) 1005–9.PubMedGoogle Scholar
  42. 42.
    Chang, S., Gray, O., Ho, D., Kroyer, J., Chang, S. Y, McLaughlin, J. & Mark, D., Expression of eukaryotic genes in Bacillus subtilis using signals of penP, p. 159–169. In Molecular Cloning and Gene Regulation in Bacilli, ed. A. T. Ganesan, S. Chang & J. A. Hoch. Academic Press, New York, 1982.Google Scholar
  43. 43.
    Saunders, C. W., Schmidt, B. J., Mallonee, R. L. & Guyer, M. S., Secretion of human serum albumin from Bacillus subtilis. J. Bacteriol., 169 (1987) 2917–25.PubMedGoogle Scholar
  44. 44.
    Schlein, C. H., Kashiwagi, F., Fujisawa, A. & Weissman, C., Secretion of mature IFN-α-2 and accumulation of uncleaved precursor by Bacillus subtilis transformed with a hybrid α-amylase signal sequence-IFN-α-2 gene. Biotechnology, 4 (1986) 719–25.CrossRefGoogle Scholar
  45. 45.
    Honjo, M., Akaoka, A., Nakayama, A., Shimada, H. & Furutani, Y., Construction of the secretion vector containing the prepro structure coding region of the Bacillus amyloliquefaciens neutral protease gene and secretion of Bacillus subtilis α-amylase and human interferon ß in Bacillus subtilis. J. Biotechnol., 3 (1985) 73–84.CrossRefGoogle Scholar
  46. 46.
    Stephens, M., Rudolph, C., Hannett, N., Stassi, D. & Pero, J., Secretion vector for Bacillus subtilis. International Patent Application PCT/US8600636, 1986.Google Scholar
  47. 47.
    Fahnestock, S. R. & Fisher, K. E., Protease-deficient Bacillus subtilis host strains for production of Staphylococcal protein A. Appl. Environ. Microbiol., 53 (1987) 379–84.PubMedGoogle Scholar
  48. 48.
    Kawamura, F. & Doi, R. H., Construction of a Bacillus subtilis double mutant deficient in extracellular alkaline and neutral proteases. J. Bacteriol., 160 (1984) 442–4.PubMedGoogle Scholar
  49. 49.
    Stahl, M. L. & Ferrari, E., Replacement of the Bacillus subtilis subtilisin structural gene with an in vitro-derived deletion mutation. J. Bacteriol., 158 (1984)411–18.PubMedGoogle Scholar
  50. 50.
    Piggot, P. J. & Coote, J. G., Genetic aspects of bacterial endospore formation. Bact. Revs., 40 (1976) 908–62.Google Scholar
  51. 51.
    Bruckner, R. & Doi, R. H., Meeting abstract at 4th International Conference on the Genetics and Biotechnology of the Bacilli, San Diego, CA, June 1987.Google Scholar

Copyright information

© Elsevier Science Publishers Ltd 1990

Authors and Affiliations

  • Jeffery Errington
    • 1
  • Andrew Mountain
    • 2
  1. 1.Microbiology Unit, Department of BiochemistryUniversity of OxfordOxfordUK
  2. 2.Celltech LtdSloughUK

Personalised recommendations