Skip to main content

Is Bacillus an Alternative Expression System?

  • Chapter
Protein Production by Biotechnology

Abstract

In this review we consider the possible use of Bacillus subtilis as a host for the production of heterologous proteins. There are several potential advantages to be gained from the use of this organism, particularly its efficient secretion of proteins into the growth medium. Although it is unlikely to become the first choice host for the production of certain types of protein, for example potentially therapeutic mammalian proteins, which often undergo specific and necessary post-translation modifications, there are certainly some important groups of proteins, for example industrial enzymes, for which the Bacilli are already heavily used. The market for such enzymes is likely to grow very rapidly as recombinant DNA methods allow for the production of proteins from diverse and often little characterised microorganisms. Exploitation of these natural products will depend upon the development of versatile and robust expression systems, and there is growing evidence that Bacillus will be a useful system. On the other hand, Bacillus has certain undesirable properties as a host, such as the elaboration of proteases, which can cause loss of product by degradation. If such problems can be overcome, and in this review we assess the technical difficulties involved, then B. subtilis may turn out to be the host of choice for the production of many of the new industrial enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Volesky, B. & Luong, J. H. T., Microbial enzymes: production, purification and isolation. CRC Crit. Rev. Biotechnol., 2 (1985) 119–46.

    Article  CAS  Google Scholar 

  2. Errington, J., Generalized cloning vectors for Bacillus subtilis. In Vectors: a Survey of Molecular Cloning Vectors and their Uses, ed. R. L. Rodriguez & D. T. Denhardt. Butterworths, Boston, 1988, pp. 345–62.

    Google Scholar 

  3. Bron, S. & Luxen, E., Segregational instability of pUB110-derived recombinant plasmids in Bacillus subtilis. Plasmid, 14 (1985) 235–44.

    Article  PubMed  CAS  Google Scholar 

  4. te Riele, H., Michel, B. & Ehrlich, S. D., Single-stranded plasmid DNA in Bacillus subtilis and Staphylococcus aureus. Proc. Nat. Acad. Sci., USA, 83 (1986) 2541–5.

    Article  Google Scholar 

  5. Meselson, M. & Radding, C. M., A general model for genetic recombination. Proc. Nat. Acad. Sci., USA, 72 (1975) 358–61.

    Article  CAS  Google Scholar 

  6. Michel, B. & Ehrlich, S. D., Recombination is a quadratic function of the length of homology during plasmid transformation of Bacillus subtilis. EMBO J., 3 (1984) 2879–84.

    PubMed  CAS  Google Scholar 

  7. Gruss, A. & Ehrlich, S. D., Insertion of foreign DNA into plasmids from Gram-positive bacteria induces formation of high-molecular-weight plasmid multimers. J. Bacteriol., 170 (1988) 1183–90.

    PubMed  CAS  Google Scholar 

  8. Bron, S., Luxen, E. & Swart, P., Instability of recombinant pUB110 plasmids in Bacillus subtilis: plasmid-encoded stability function and effects of DNA inserts. Plasmid, 19 (1988) 231–41.

    Article  PubMed  CAS  Google Scholar 

  9. McKenzie, T., Hoshino, T., Tanaka, T. & Sueoka, N., The nucleotide sequence of pUB110: some salient features in relation to replication and its regulation. Plasmid, 15 (1986) 93–103.

    Article  PubMed  CAS  Google Scholar 

  10. Viret, J. F. & Alonso, J. C., Generation of linear multigenome-length plasmid molecules in Bacillus subtilis. Nucl. Acids Res., 15 (1987) 6349–67.

    Article  PubMed  CAS  Google Scholar 

  11. Uozumi, T., Ozaki, A., Beppu, T. & Arima, K., New cryptic plasmid of Bacillus subtilis and restriction analysis of other plasmids found by general screening. J. Bacteriol., 142 (1980) 315–18.

    PubMed  CAS  Google Scholar 

  12. Imanaka, T., Ano, T., Fujii, M. & Aiba, S., Two replication determinants of an antibiotic-resistance plasmid, pTB19, from a thermophilic Bacillus. J. Gen. Microbiol., 130 (1984) 1399–408.

    PubMed  CAS  Google Scholar 

  13. Diderichsen, B., A genetic system for stabilization of cloned genes in Bacillus subtilis. Bacillus Molecular Genetics and Biotechnology applications, ed. A. T. Ganesan & J. A. Hoch. Academic Press, Orlando, 1986, pp. 35–46.

    Google Scholar 

  14. Bron, S., Bosma, P., Belkum, M. Van & Luxen, E., Stability function in the Bacillus subtilis plasmid pTA1060. Plasmid, 18 (1987) 8–15.

    Article  PubMed  CAS  Google Scholar 

  15. Chang, S., Chang, S.-Y. & Gray, O., Structural and genetic analysis of a par locus that regulates plasmid partitioning in Bacillus subtilis. J. Bacteriol., 169 (1987) 3952–62.

    PubMed  CAS  Google Scholar 

  16. Errington, J., A general method for fusion of the Escherichia coli lacZ gene to chromosomal genes in Bacillus subtilis. J. Gen. Microbiol., 132 (1988) 2953–66.

    Google Scholar 

  17. Niaudet, B., Janniere, L. & Ehrlich, S. D., Integration of linear, heterologous DNA molecules into the Bacillus subtilis chromosome: mechanism and use in induction of predictable rearrangements. J. Bacteriol., 163 (1985) 111–20.

    PubMed  CAS  Google Scholar 

  18. Duncan, C. H., Wilson, G. A. & Young, F. E., Mechanism of integrating foreign DNA during transformation of Bacillus subtilis. Proc. Nat. Acad. Sci., USA, 75 (1975)3664–8.

    Article  Google Scholar 

  19. Albertini, A. M. & Galizzi, A., Amplification of a chromosomal region in Bacillus subtilis. J. Bacteriol., 162 (1985) 1203–11.

    PubMed  CAS  Google Scholar 

  20. Janniere, L., Niaudet, B., Pierre, E. & Ehrlich, S. D., Stable gene amplification in the chromosome of Bacillus subtilis. Gene, 40 (1985) 47–55.

    Article  PubMed  CAS  Google Scholar 

  21. Young, M., Gene amplification in Bacillus subtilis. J. Gen. Microbiol., 130 (1984) 1613–21.

    PubMed  CAS  Google Scholar 

  22. Young, M. & Hranueli, D., Chromosomal gene amplification in Gram-positive bacteria. In Recombinant DNA and Bacterial Fermentation, ed. J. A. Thompson. CRC, Boca Raton, Florida 1988, pp. 157–200.

    Google Scholar 

  23. Joyet, P., Levin, D., de Louvencourt, L., Le Reverent, B., Heslot, H. & Aymerich, S., Expression of thermostable alpha-amylase gene under the control of levansucrase inducible promoter from Bacillus subtilis. In Bacillus Molecular Genetics and Biotechnology Applications, ed. A. T. Ganesan & J. A. Hoch. Academic Press, Orlando, 1986, pp. 479–91.

    Google Scholar 

  24. Kallio, P., Palva, A. & Palva, I., Enhancement of α-amylase production by integrating and amplifying the α-amylase gene of Bacillus amyloliquefaciens in the genome of Bacillus subtilis. Appl. Microbiol Biotechnol., 27 (1987) 64–71.

    Article  CAS  Google Scholar 

  25. Ruppen, M., Band, L. & Henner, D. J., Efficient expression of human growth hormone in Bacillus subtilis. In Bacillus Molecular Genetics and Biotechnology Applications, ed. A. T. Ganesan & J. A. Hoch. Academic Press, Orlando, 1986, pp. 423–32.

    Google Scholar 

  26. Dhaese, P., Hussey, C. & Van Montagu, M., Thermo-inducible gene expression in Bacillus subtilis using transcriptional regulatory elements from temperate phage φ105. Gene, 32 (1984) 181–94.

    Article  PubMed  CAS  Google Scholar 

  27. Van Kaer, L., Van Montagu, M. & Dhaese, P., Transcriptional control in the EcoRI-F immunity region of Bacillus subtilis phage φ105. J. Molec. Biol., 197 (1987) 55–67.

    Article  PubMed  Google Scholar 

  28. Klier, A. F. & Rapoport, G., Genetics and regulation of carbohydrate catabolism in Bacillus. Ann. Rev. Microbiol., 42 (1988) 65–95.

    Article  CAS  Google Scholar 

  29. Zukowski, M. M. & Miller, L., Hyperproduction of an intracellular heterologous protein in a sacU h mutant of Bacillus subtilis. Gene, 46 (1986) 247–55.

    Article  PubMed  CAS  Google Scholar 

  30. Priest, F. G., Extracellular Enzymes, Van Nostrand Reinhold (UK) Co. Ltd, Wokingham, Berkshire, UK, 1984.

    Google Scholar 

  31. Fahnestock, S. R. & Fisher, K E., Expression of the Staphylococcal protein A gene in Bacillus subtilis by gene fusions using the promoter from a Bacillus amyloliquefaciens α-amylase gene. J. Bacteriol., 165 (1986) 796–804.

    PubMed  CAS  Google Scholar 

  32. Kovacevic, S., Veal, L. E., Hsiung, H. M. & Miller, J. R., Secretion of staphylococcal nuclease by Bacillus subtilis. J. Bacteriol., 162 (1985) 521–8.

    PubMed  CAS  Google Scholar 

  33. Soutschek-Bauer, E. & Staudenbauer, W. L., Synthesis and secretion of a heat-stable carboxymethylcellulase from Clostridium thermocellum in Bacillus subtilis. Mol. Gen. Genet., 208 (1987) 537–41.

    Article  PubMed  CAS  Google Scholar 

  34. Wang, P.-Z., Projan, S. J., Leason, K. R. & Novick, R. P., Translational fusion with a secretory enzyme as an indicator. J. Bacteriol., 169 (1987) 3082–7.

    PubMed  CAS  Google Scholar 

  35. Von Heinje, G., Patterns of amino acids near signal-sequence cleavage sites. Eur. J. Biochem., 133 (1983) 17–21.

    Article  Google Scholar 

  36. Watson, M. E. E., Compilation of published signal sequences. Nucl. Acids Res., 13 (1984) 5145–64.

    Article  Google Scholar 

  37. Takase, K, Mizuno, H. & Yamane, K, NH2-terminal processing ofBacillus subtilis α-amylase. J. Biol. Chem., 263 (1988) 11548–53.

    PubMed  CAS  Google Scholar 

  38. Palva, I., Molecular cloning of α-amylase gene from Bacillus amyloliquefaciens and its expression in B. subtilis. Gene, 19 (1982) 81–7.

    Article  PubMed  CAS  Google Scholar 

  39. Shiroza, T., Nakazawa, K., Tashiro, T., Yamane, K., Yanagi, K., Yamasaki, M., Tamura, G., Saito, H., Kawade, Y. & Taniguchi, T., Synthesis and secretion of biologically active mouse interferon-ß using a Bacillus subtilis α-amylase secretion vector. Gene, 34 (1985) 1–8.

    Article  PubMed  CAS  Google Scholar 

  40. Vasantha, N. & Thompson, L. D., Secretion of a heterologous protein from Bacillus subtilis with the aid of protease signal sequences. J. Bacteriol., 165 (1986) 837–42.

    PubMed  CAS  Google Scholar 

  41. Wong, S.-L., Kawamura, F. & Doi, R. H., Use of the Bacillus subtilis subtilisin signal peptide for efficient secretion of TEM ß-lactamase during growth. J. Bacteriol., 168 (1986) 1005–9.

    PubMed  CAS  Google Scholar 

  42. Chang, S., Gray, O., Ho, D., Kroyer, J., Chang, S. Y, McLaughlin, J. & Mark, D., Expression of eukaryotic genes in Bacillus subtilis using signals of penP, p. 159–169. In Molecular Cloning and Gene Regulation in Bacilli, ed. A. T. Ganesan, S. Chang & J. A. Hoch. Academic Press, New York, 1982.

    Google Scholar 

  43. Saunders, C. W., Schmidt, B. J., Mallonee, R. L. & Guyer, M. S., Secretion of human serum albumin from Bacillus subtilis. J. Bacteriol., 169 (1987) 2917–25.

    PubMed  CAS  Google Scholar 

  44. Schlein, C. H., Kashiwagi, F., Fujisawa, A. & Weissman, C., Secretion of mature IFN-α-2 and accumulation of uncleaved precursor by Bacillus subtilis transformed with a hybrid α-amylase signal sequence-IFN-α-2 gene. Biotechnology, 4 (1986) 719–25.

    Article  Google Scholar 

  45. Honjo, M., Akaoka, A., Nakayama, A., Shimada, H. & Furutani, Y., Construction of the secretion vector containing the prepro structure coding region of the Bacillus amyloliquefaciens neutral protease gene and secretion of Bacillus subtilis α-amylase and human interferon ß in Bacillus subtilis. J. Biotechnol., 3 (1985) 73–84.

    Article  CAS  Google Scholar 

  46. Stephens, M., Rudolph, C., Hannett, N., Stassi, D. & Pero, J., Secretion vector for Bacillus subtilis. International Patent Application PCT/US8600636, 1986.

    Google Scholar 

  47. Fahnestock, S. R. & Fisher, K. E., Protease-deficient Bacillus subtilis host strains for production of Staphylococcal protein A. Appl. Environ. Microbiol., 53 (1987) 379–84.

    PubMed  CAS  Google Scholar 

  48. Kawamura, F. & Doi, R. H., Construction of a Bacillus subtilis double mutant deficient in extracellular alkaline and neutral proteases. J. Bacteriol., 160 (1984) 442–4.

    PubMed  CAS  Google Scholar 

  49. Stahl, M. L. & Ferrari, E., Replacement of the Bacillus subtilis subtilisin structural gene with an in vitro-derived deletion mutation. J. Bacteriol., 158 (1984)411–18.

    PubMed  CAS  Google Scholar 

  50. Piggot, P. J. & Coote, J. G., Genetic aspects of bacterial endospore formation. Bact. Revs., 40 (1976) 908–62.

    CAS  Google Scholar 

  51. Bruckner, R. & Doi, R. H., Meeting abstract at 4th International Conference on the Genetics and Biotechnology of the Bacilli, San Diego, CA, June 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Elsevier Science Publishers Ltd

About this chapter

Cite this chapter

Errington, J., Mountain, A. (1990). Is Bacillus an Alternative Expression System?. In: Harris, T.J.R. (eds) Protein Production by Biotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1565-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1565-0_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8858-9

  • Online ISBN: 978-1-4613-1565-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics