Skip to main content

Declarative Bias: An Overview

  • Chapter

Part of the book series: The Kluwer International Series in Engineering and Computer Science ((SECS,volume 87))

Abstract

This paper describes and places in context a continuing research program aimed at constructing effective, autonomous learning systems. We emphasize the role of knowledge that the system itself possesses in generating and selecting among inductive hypotheses. Inductive learning has often been characterized as a search in a hypothesis space for hypotheses consistent with observations. It is shown that committing to a given hypothesis space is equivalent to believing a certain logical sentence — the declarative bias. We show how many kinds of declarative bias can be relatively efficiently represented and derived from background knowledge, and discuss possibilities and problems for building complete learning systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, A. B., and Ginsberg, M. L. (1989) A Theorem-Prover for Prioritized Circumscription. San Mateo, CA, Proceedings of IJCAI-89: Morgan Kaufmann.

    Google Scholar 

  2. Blum, L., and Blum, M. (1975) Toward a mathematical theory of inductive inference. Information and Control, 28, 125–155.

    Article  MathSciNet  MATH  Google Scholar 

  3. Buchanan, B. G., and Mitchell, T. M. (1978) Model-directed Learning of Production Rules. In Waterman, D. A., and Hayes-Roth, F., (Eds.) Pattern-directed Inference Systems. New York: Academic Press.

    Google Scholar 

  4. Bundy, A., Silver, B., and Plummer, D. (1985) An Analytical Comparison of Some Rule-Learning Programs. Artificial Intelligence, 27.

    Google Scholar 

  5. Buntine, W. (1986) Generalized Subsumption and its Application to Induction and Redundancy. In Proceedings of ECAI-86, Brighton, UK.

    Google Scholar 

  6. Carnap, R. (1952) The Continuum of Inductive Methods. University of Chicago Press, Chicago, IL.

    MATH  Google Scholar 

  7. Davies, T. (1985) Analogy. Informal Note CSLI-IN-85-4, CSLI, Stanford, CA.

    Google Scholar 

  8. Davies, T. R., and Russell, S. J. (1987) A Logical Approach to Reasoning by Analogy. In Proceedings of IJCAI-87, Milan, Italy: Morgan Kaufmann.

    Google Scholar 

  9. Davies, T. R. (1988) Determination, Uniformity, and Relevance: Normative Criteria for Generalization and Reasoning by Analogy. Stanford, CA, Report No. CSLI-88-126: Stanford University Center for the Study of Language and Information.

    Google Scholar 

  10. Dietterich, T. G. (1986) Learning at the Knowledge Level. Machine Learning, 1(3).

    Google Scholar 

  11. Genesereth, M. R. (1983) An Overview of Meta-Level Architecture. In Proceedings of AAAI-83, Austin, TX: Morgan Kaufmann, 119–124.

    Google Scholar 

  12. Genesereth, M. R., and Nilsson, N. J. (1987) Logical Foundations of Artificial Intelligence. Los Altos, CA: Morgan Kaufmann.

    MATH  Google Scholar 

  13. Getoor, L. (1989) The Instance Description: How It Can Be Derived and the Use of its Derivation. M.S. Report, Computer Science Division, University of California, Berkeley.

    Google Scholar 

  14. Goodman, N. (1955) Fact, fiction and forecast. Cambridge, MA: Harvard University Press.

    Google Scholar 

  15. Greiner, R., and Genesereth, M. R. (1985) What’s New? A Semantic Definition of Novelty In Proceedings of IJCAI-83, Los Altos, CA: William Kaufmann.

    Google Scholar 

  16. Greiner, R. (1989) Towards A Formal Analysis of EBL In Proceedings of the Sixth International Workshop on Machine Learning, San Mateo, CA: Morgan Kaufmann.

    Google Scholar 

  17. Grosof, Benjamin N., and Russell, Stuart J., (1989) Shift of Bias As Non-Monotonic Reasoning. In Machine Learning, Meta-Reasoning, and Logics, Kluwer Academic. (Based on the Proceedings of the Workshop held in Sesimbra, Portugal, February 1988.)

    Google Scholar 

  18. Grosof, B. N., and Russell, S. J. (1989) Declarative Bias for Structural Domains. In Proceedings of the Sixth International Workshop on Machine Learning, San Mateo, CA: Morgan Kaufmann.

    Google Scholar 

  19. Grosof, B. N. (forthcoming) Non-Monotonic Theories: Structure, Inference, and Applications (working title). Ph. D. thesis (in preparation), Stanford University, Stanford, CA.

    Google Scholar 

  20. Haussler, D. (1988a). Quantifying Inductive Bias: AI Learning Algorithms and Valiant’s Learning Framework. Technical report, Department of Computer Science, University of California, Santa Cruz, CA.

    Google Scholar 

  21. Hirsh, H. (1987) Explanation-based generalization in a logic programming environment. In Proceedings of the Tenth International Joint Conference on Artificial Intelligence, Milan, Italy.

    Google Scholar 

  22. Holland, J. H., Holoake, K. J., Nisbett, R. E., and Thagard, P. R. (1986) Induction, Cambridge, Mass.: M.I.T. Press.

    Google Scholar 

  23. Kedar-Cabelli, S. T., and McCarty, L. T. (1987) EBG as Resolution Theorem Proving In Proceedings of the Fourth International Workshop on Machine Learning, Los Altos, CA: Morgan Kaufmann.

    Google Scholar 

  24. Keller, R. M. (1987) Defining operationality for explanation-based learning. In Proceedings of the Sixth National Conference on Artificial Intelligence, Seattle, WA.

    Google Scholar 

  25. Lifschitz, Vladimir (1984) Some Results On Circumscription. In Proceedings of the first AAAI Non-Monotonic Reasoning Workshop, pp. 151–64, New Paltz, NY, Oct. 1984.

    Google Scholar 

  26. Lifschitz, Vladimir, (1985) “Computing Circumscription”. In Proceedings of IJCAI-85, pp. 121–127.

    Google Scholar 

  27. Mahadevan, S. (1989) Using Determinations in EBL: A Solution to the Incomplete Theory Problem. In Proceedings of the Sixth International Workshop on Machine Learning, San Mateo, CA: Morgan Kaufmann.

    MATH  Google Scholar 

  28. McCarthy, John (1986) Applications of Circumscription to Formalizing Common-Sense Knowledge. In Artificial Intelligence, Vol. 28, No. 1, pp. 89–116, Feb. 1986.

    Article  MathSciNet  Google Scholar 

  29. Michalski, R. S. (1983) A Theory and Methodology of Inductive Learning. Artificial Intelligence, 20(2).

    Google Scholar 

  30. Mitchell, Tom M. (1980) The Need for Biases in Learning Generalizations. Technical report TR CBM-TR-117, Computer Science Department, Rutgers University, New Brunswick, NJ.

    Google Scholar 

  31. Mitchell, Tom M. (1982) Generalization as Search. Artificial Intelligence, 18(2), 203–226.

    Article  MathSciNet  Google Scholar 

  32. Mitchell, T. M., Utgoff, P., and Banerji, R. (1983) Learning by Experimentation: Acquiring and Refining Problem-Solving Heuristics. In Carbonell, J. G., Michalski, R., and Mitchell T., (eds.) Machine Learning: an Artificial Intelligence Approach. Palo Alto, CA: Tioga Press.

    Google Scholar 

  33. Mitchell, T. M., Keller, R. M., & Kedar-Cabelli, S. T. (1986). Explanation-based generalization: A unifying View. Machine Learning, 1, 47–80.

    Google Scholar 

  34. Mitchell, T. M. (in press). Can we build learning robots? To appear in Proceedings of the workshop on representation and learning in an autonomous agent, Lagos, Portugal.

    Google Scholar 

  35. Mooney, R. J., and Bennett, S. W. (1986) A Domain-Independent Explanation-Based Generalizer. In Proceedings of AAAI-86, Philadelphia, PA: Morgan Kaufmann.

    Google Scholar 

  36. Muggleton, S. H. and Buntine, W. (1988) Machine Invention of First-Order Predicates by Inverting Resolution. In Proceedings of the Fifth International Machine Learning Conference, Ann Arbor, Michigan: Morgan Kaufmann.

    Google Scholar 

  37. Plotkin, G. D. (1970) A note on inductive generalization. In Meltzer, B. and Michie, D. (Eds.), Machine Intelligence 5. New York: Elsevier.

    Google Scholar 

  38. Quinlan, J. R. (1983) Learning Efficient Classification Procedures and their Application to Chess End Games. In Carbonell, J. G., Michalski, R., and Mitchell T., (Eds.) Machine Learning: an Artificial Intelligence Approach. Palo Alto, CA: Tioga Press.

    Google Scholar 

  39. Rosenblatt, F. (1957) The perceptron: A perceiving and recognizing automaton. Rep. No. 85-460-1, Project PARA, Cornell Aeronautical Laboratory.

    Google Scholar 

  40. Russell, S. J. (1985) The Compleat Guide to MRS. Technical Report No. STAN-CS-85-1080, Stanford University, Stanford, CA.

    Google Scholar 

  41. Russell, S. J. (1987) Analogy and Single-Instance Generalization. In Proceedings of the Fourth International Workshop on Machine Learning, Los Altos, CA: Morgan Kaufmann.

    Google Scholar 

  42. Russell, S. J. (1989) Analogical and Inductive Reasoning. Pitman Press: London, U.K.. (originally, a Stanford University PhD dissertation, 1986)

    Google Scholar 

  43. Russell, S. J., and Grosof, B. N. (1987) A Declarative Approach to Bias in Concept Learning. In Proceedings of the Sixth National Conference on Artificial Intelligence, Seattle, WA.

    Google Scholar 

  44. Russell, Stuart J., and Grosof, Benjamin N. (1989) A Sketch of Autonomous Learning using Declarative Bias. In: Brazdil, P., and Konolige, K., eds., Machine Learning, Meta-Reasoning, and Logics. Kluwer Academic. (Based on the Proceedings of the Workshop held in Sesimbra, Portugal, February 1988.)

    Google Scholar 

  45. Russell, S. J., and Subramanian, D. (1989) Mutual Constraints on Representation and Inference. In: Brazdil, P., and Konolige, K., eds., Machine Learning, Meta-Reasoning, and Logics. Kluwer Academic. (Based on the Proceedings of the Workshop held in Sesimbra, Portugal, February 1988.)

    Google Scholar 

  46. Russell, S. J. (1988) Tree-Structured Bias. In Proceedings of the Seventh National Conference on Artificial Intelligence, Minneapolis, MN: Morgan Kaufmann.

    Google Scholar 

  47. Shapiro, E. Y. (1981) Inductive inference of theories from facts. Technical Report 192, Department of Computer Science, Yale University, New Haven, CT.

    Google Scholar 

  48. Solomonoff, R. (1964) A formal theory of inductive inference. Information and Control 7:1–22, 224-254.

    Article  MathSciNet  MATH  Google Scholar 

  49. Subramanian, D., and Feigenbaum, J. (1986) Factorization in Experiment Generation. In Proceedings of the Fifth National Conference on Artificial Intelligence, Philadelphia, PA: Morgan Kaufmann.

    Google Scholar 

  50. Subramanian, D., and Smith, D. E. (1988) Knowledge-Level Learning: An Alternate View. In Proceedings of the AAAI Spring Symposium on Explanation-Based Learning, San Mateo, CA: Morgan Kaufmann.

    Google Scholar 

  51. Utgoff, P. E. (1984) Shift of Bias for Inductive Concept Learning. Ph.D. thesis, Computer Science Department, Rutgers University, New Brunswick, NJ.

    Google Scholar 

  52. Utgoff, P. E. (1986) Shift of Bias for Inductive Concept Learning. In Carbonell, J. G., Michalski, R., and Mitchell T., (eds.) Machine Learning: an Artificial Intelligence Approach, Vol. II. Los Altos, CA: Morgan Kaufmann.

    Google Scholar 

  53. Valiant, L. G. (1984) A theory of the learnable. Communications of the ACM, 27, 1134–1142.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Russell, S.J., Grosof, B.N. (1990). Declarative Bias: An Overview. In: Benjamin, D.P. (eds) Change of Representation and Inductive Bias. The Kluwer International Series in Engineering and Computer Science, vol 87. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1523-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1523-0_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8817-6

  • Online ISBN: 978-1-4613-1523-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics