Clinical Relevance of Myocardial “Stunning”

  • Roberto Bolli
  • Craig J. Hartley
  • Raphael S. Rabinovitz


Experimental studies have demonstrated that myocardium reperfused after reversible ischemia exhibits prolonged depression of contractile function (“stunning”). Despite the multiplicity of clinical situations in which myocardial stunning would be expected to occur, investigation of this phenomenon in humans has been hindered by several major problems, including the limited accuracy of the methods available to measure regional left ventricular function, the inability to quantify regional myocardial blood flow during acute ischemia, the difficulty in establishing with certainty the beginning and end of an ischemic episode, and the uncontrolled influence of variables (such as preload, afterload, adrenergic tone, and inotropic therapy) that have a major impact on postischemic dysfunction. The main problem is to discern whether a reversible defect of contractility is caused by stunning, silent ischemia, or hibernation (i.e., chronic ischemia). This differential diagnosis requires the simultaneous measurement of regional myocardial function and flow, which thus far has not been generally possible. Despite these limitations, however, numerous clinical observations suggest that stunning does occur in various settings in which the myocardium is exposed to transient ischemia, including coronary angioplasty, exercise-induced angina, angina at rest (unstable or variant), acute myocardial infarction with early reperfusion, open-heart surgery, and cardiac transplantation. Recognition of this entity is important, amongst other reasons, because it is likely to cause significant morbidity and because it is potentially correctable with inotropic therapy or even preventable with antioxidant therapy. In addition, the appreciation of the phenomenon of myocardial stunning should allow the clinician to assess the efficacy of reperfusion therapy with greater accuracy and to recognize that patients should not be denied mechanical revascularization solely because of an abnormal left ventricular wall motion. Perhaps the most intriguing clinical implication of the concept of myocardial stunning is the possibility that in patients who exhibit frequent episodes of ischemia in the same territory, the myocardium may not be able to fully recover between episodes and thus may remain reversibly depressed for prolonged periods of time, or even chronically, which could account for some cases of “ischemic cardiomyopathy.” Our understanding of myocardial stunning in humans is still relatively crude and will not significantly improve until studies are performed that measure simultaneously regional myocardial perfusion and function (so that stunning can be differentiated from silent ischemia and hibernation). Future important areas of research should also include the elucidation of whether stunning can become chronic and the evaluation of therapies (such as antioxidant treatments) designed to prevent this contractile abnormality. Further knowledge regarding the clinical significance of myocardial stunning will be essential to improve our understanding of the pathophysiology of coronary artery disease and our management of the adverse manifestations associated with this disorder.


Regional Wall Motion Coronary Bypass Surgery Myocardial Stunning Regional Myocardial Blood Flow Silent Ischemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Heyndrickx GR, Millard RW, McRitchie RJ, Maroko PR, Vatner SF. Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest 1975;56:978–985.PubMedCrossRefGoogle Scholar
  2. 2.
    Weiner JM, Apstein CS, Arthur JH, Pirzada FA, Hood WB Jr. Persistence of myocardial injury following brief periods of coronary occlusion. Cardiovasc Res 1976;10:678–686.PubMedCrossRefGoogle Scholar
  3. 3.
    Heyndrickx GR, Baig H, Nellens P, Leusen I, Fishbein MC, Vatner SF. Depression of regional blood flow and wall thickening after brief coronary occlusions. Am, J Physiol 1978; 234:H653–H659.Google Scholar
  4. 4.
    Bolli R, Zhu WX, Thornby JI, O’Neill PG, Roberts R. Time-course and determinants of recovery of function after reversible ischemia in conscious dogs. Am J Physiol 1988;254:H102–H114.PubMedGoogle Scholar
  5. 5.
    Charlat ML, O’Neill PG, Hartley CJ, Roberts R, Bolli R. Prolonged abnormalities of left ventricular diastolic wall thinning in the “stunned” myocardium in conscious dogs: Time-course and relation to systolic function. J Am Coll Cardiol 1989;13:185–194.PubMedCrossRefGoogle Scholar
  6. 6.
    Bolli R, Patel BS, Hartley CJ, Thornby JI, Jeroudi MO, Roberts R. Nonuniform transmural recovery of contractile function in the “stunned” myocardium. Am J Physiol 1989;257:H375–H385.PubMedGoogle Scholar
  7. 7.
    Theroux P, Ross J Jr., Franklin D, Kemper WS, Sasayama S. Coronary arterial reperfusion. III. Early and late effects on regional myocardial function and dimensions in conscious dogs. Am J Cardiol 1976;38:599–606.PubMedCrossRefGoogle Scholar
  8. 8.
    Lavallee M, Cox D, Patrick TA, Vatner SF. Salvage of myocardial function by coronary artery reperfusion 1, 2, and 3 hours after occlusion in conscious dogs. Cire Res 1983; 53:235–247.Google Scholar
  9. 9.
    Bush LR, Buja LM, Samowitz W, Rude RE, Wathen M, Tilton GD, Willerson JT. Recovery of left ventricular segmental function after long-term reperfusion following temporary coronary occlusion in conscious dogs: Comparison of 2- and 4-hour occlusions. Circ Res 1983;53:248–263.PubMedGoogle Scholar
  10. 10.
    Ellis SG, Henschke CI, Sandor T, Wynne J, Braunwald E, Kloner RA. Time course of functional and biochemical recovery of myocardium salvaged by reperfusion. J Am Coll Cardiol 1983;1:1047–1055.PubMedCrossRefGoogle Scholar
  11. 11.
    Matsuzaki M, Gallagher KP, Kemper WS, White F, Ross J Jr. Sustained regional dysfunction produced by prolonged coronary stenosis: Gradual recovery after reperfusion. Circulation 1983;68:170–182.PubMedCrossRefGoogle Scholar
  12. 12.
    Kloner RA, Ellis SG, Lange R, Braunwald E. Studies of experimental coronary artery reperfusion: Effects on infarct size, myocardial function, biochemistry, ultrastructure and microvascular damage. Circulation 1983;68 (Suppl I):I8–I15.PubMedGoogle Scholar
  13. 13.
    Braunwald E, Kloner RA. The stunned myocardium: Prolonged, postischemic ventricular dysfunction. Circulation 1982;66:1146–1149.PubMedCrossRefGoogle Scholar
  14. 14.
    Rahimtoola SH. A perspective on the three large multicenter randomized clinical trials of coronary bypass surgery for chronic stable angina. Circulation 1985;75 (Suppl V): V123–V135.Google Scholar
  15. 15.
    Braunwald E, Rutherford JD. Reversible ischemic left ventricular dysfunction: Evidence for the “hibernating myocardium.” J Am Coll Cardiol 1986;8:1467–1470.PubMedCrossRefGoogle Scholar
  16. 16.
    Pagani M, Vatner SF, Baig H, Braunwald E. Initial myocardial adjustments to brief periods of ischemia and reperfusion in the conscious dog. Circ Res 1977;43:83–91.Google Scholar
  17. 17.
    Serruys PW, Wijns W, van den Brand M, Meij S, Slager C, Schuurbiers JCH, Hugenholtz PG, Brower RW. Left ventricular performance, regional blood flow, wall motion and lactate metabolism during transluminal angioplasty. Circulation 1984;70:24–36.CrossRefGoogle Scholar
  18. 18.
    Wijns W, Serruys PW, Slager CJ, Grimm J, Krayenbuehl HP, Hugenholtz PG, Hess OM. Effect of coronary occlusion during percutaneous transluminal angioplasty in humans on left ventricular chamber stiffness and regional diastolic pressure-radius relations. J Am Coll Cardiol 1986;7:455461.Google Scholar
  19. 19.
    Labovitz AJ, Lewen MK, Kern M, Vandormael M, Deligonal U, Kennedy HL. Evaluation of left ventricular systolic and diastolic dysfunction during transient myocardial ischemia produced by angioplasty. J Am Coll Cardiol 1987; 10:748–755.PubMedCrossRefGoogle Scholar
  20. 20.
    Cohen MV, Downey JM. Myocardial stunning in dogs: Preconditioning effect and influence of coronary collateral flow. Am Heart J 1990;120:282–291.PubMedCrossRefGoogle Scholar
  21. 21.
    Robertson WS, Feigenbaum H, Armstrong WF, Dillon JC, O’Donnell J, McHenry PW. Exercise echocardiography: A clinical practical addition in the evaluation of coronary artery disease. J Am Coll Cardiol 1983;6:1085–1089.CrossRefGoogle Scholar
  22. 22.
    Kloner RA, Allen J, Zheng Y, Ruiz C. Myocardial stunning following exercise treadmill testing in man (Abstr). J Am Coll Cardiol 1990;15:203A.CrossRefGoogle Scholar
  23. 23.
    Camici P, Araujo LI, Spinks T, Lammertsma AA, Kaski JC, Shea MJ, Selwyn AP, Jones T, Maseri A. Increased uptake of 18F-fluorodeoxyglucose in postischemic myocardium of patients with exercise-induced angina. Circulation 1986;74:81–88.PubMedCrossRefGoogle Scholar
  24. 24.
    Homans DC, Laxson DD, Sublett E, Lindstrom P, Bache RJ. Cumulative deterioration of myocardial function after repeated episodes of exercise-induced ischemia. Am J Physiol 1989;256:H1462—H1471.PubMedGoogle Scholar
  25. 25.
    Nixon JV, Brown CN, Smitherman TC. Identification of transient and persistent segmental wall motion abnormalities in patients with unstable angina by two-dimensional echocardiography. Circulation 1982;65:1497–1503.PubMedCrossRefGoogle Scholar
  26. 26.
    Jeppson GM, Clayton PD, Blair TJ, Liddle HV, Jensen RL, Klausner SC. Changes in left ventricular wall motion after coronary artery bypass surgery: Signal or noise? Circulation 1981;64:945–951.PubMedCrossRefGoogle Scholar
  27. 27.
    Kolibask AJ, Goodenow JS, Busk CA, Tetalman MR, Lewis RP. Improvement of myocardial perfusion and left ventricular function after coronary artery bypass grafting in patients with unstable angina. Circulation 1979;59:66–74.Google Scholar
  28. 28.
    Priest MF, Curry GC, Smith LR, Rogers WJ, Mantle JA, Rackley CE, Kouchoukos NT, Russell RO Jr. Changes in left ventricular segmental wall motion following randomization to medicine or surgery in patients with unstable angina. Circulation 1978;58 (Suppl I):162.Google Scholar
  29. 29.
    De Feyter PJ, Suryapranata H. Serruys PW, Beatt K, Van Den Brand M, Hugenholtz PG. Effects of successful percutaneous transluminal coronary angioplasty on global and regional left ventricular function in unstable angina pectoris. Am J Cardiol 1987;60:993–997.PubMedCrossRefGoogle Scholar
  30. 30.
    Renkin J, Wijns W, Ladha Z, Col J. Reversal of segmental hypokinesis by coronary angioplasty in patients with unstable angina, persistent T wave inversion, and left anterior descending coronary artery stenosis. Additional evidence for myocardial stunning in humans. Circulation 1990;82: 913–921.PubMedCrossRefGoogle Scholar
  31. 31.
    Flameng W, Vanhaecke J, Van Belle H, Borgers M, De Beer L, Minten J. Relation between coronary artery steno-sis and myocardial purine metabolism, histology and regional function in humans. J Am Coll Cardiol 1987;9: 1235–1242.PubMedCrossRefGoogle Scholar
  32. 32.
    Mathias P, Kent NZ, Blevins RD, Cascase P, Rubinfire M. Coronary vaospasm as a case of stunned myocardium. Am Heart J 1987;113:383–385.CrossRefGoogle Scholar
  33. 33.
    Reduto LA, Smalling RW, Freund GC, Gould KL. Intracoronary infusion of streptokinase in patients with acute myocardial infarction: Effects of reperfusion on left ventricular performance. Am J Cardiol 1981;48:403–409.PubMedCrossRefGoogle Scholar
  34. 34.
    Anderson JL, Marshall HW, Bray BE, Lutz JR, Frederick PR, Yanowitz, FG, Datz FL, Klausner SC, Hagan AD. A randomized trial of intracoronary streptokinase in the treatment of acute myocardial infarction. N Engl J Med 1983;308:1313–1318.Google Scholar
  35. 35.
    Stack RS, Phillips HR III, Grierson DS, Behar VS, Kong Y, Peter RH, Swain JL, Greenfield JC. Functional improvement of jeopardized myocardium following intracoronary streptokinase infusion in acute myocardial infarction. J Clin Invest 1983;72:84–95.PubMedCrossRefGoogle Scholar
  36. 36.
    Charuzi Y, Beeder C, Marshall LA, Sasaki H, Pack NB, Geft I, Ganz W. Improvement in regional and global left ventricular function after intracoronary thrombolysis: Assessment with two-dimensional echocardiography. Am J Cardiol 1984;53:662–665.PubMedCrossRefGoogle Scholar
  37. 37.
    Patel B, Kloner RA. Analysis of reported randomized trials of streptokinase therapy for acute myocardial infarction in the 1980s. Am J Cardiol 1987;59:501–504.PubMedCrossRefGoogle Scholar
  38. 38.
    Topol EJ, Weiss JL, Brinker JA, Brin KP, Gottlieb SO, Becker LC, Bulkley BH, Chandra N, Flaherty JT, Gerstenblith G, Gottlieb SH, Guerci AD, Ouyang P, Llewellyn MP, Weisfeldt ML, Shapiro EP. Regional wall motion improvement after coronary thrombolysis with recombinant tissue plasminogen activator: Importance of coronary angioplasty. J Am Coll Cardiol 1985;6:426–433.PubMedCrossRefGoogle Scholar
  39. 39.
    Bateman TM, Czer LSC, Gray RJ, Maddahi J, Raymond MJ, Geft IL, Ganz W, Shah PK, Berman DS. Transient pathologic Q waves during acute ischemic events: An electrocardiographic correlate of stunned but viable myocardium. Am Heart J 1983;6:1421–1426.CrossRefGoogle Scholar
  40. 40.
    Schmidt WG, Sheehan FH, von Essen R, Vebis R, Effert S. Evolution of left ventricular function after intracoronary thrombolysis for acute myocardial infarction. Am J Cardiol 1989;63:497–502.PubMedCrossRefGoogle Scholar
  41. 41.
    Bourdillon PDV, Broderick TM, Williams ES, Davis C, Dillon JC, Armstrong WF, Fineberg N, Ryan T, Feigenbaum H. Early recovery of regional left ventricular function after reperfusion in acute myocardial infarction assessed by serial two-dimensional echocardiography. Am J Cardiol 1989; 63:641–646.PubMedCrossRefGoogle Scholar
  42. 42.
    Williamson BD, Lim MJ, Buda AJ. Transient left ventricular filling abnormalities (diastolic stunning) after acute myocardial infarction. Am J Cardiol 1990;12:897–903.CrossRefGoogle Scholar
  43. 43.
    Patel B, Kloner RA, Przyklenk K, Braunwald E. Postischemic myocardial “stunning”: A clinically relevant phenomenon. Ann Intern Med 1988;108:626–628.PubMedGoogle Scholar
  44. 44.
    Sheehan FH, Mathey DG, Schofer J, Dodge HT, Bolson EL. Factors that determine recovery of left ventricular function after thrombolysis in patients with acute myocardial infarction. Circulation 1985;71:1121–1128.PubMedCrossRefGoogle Scholar
  45. 45.
    Gardner TJ: Oxygen radicals in cardiac surgery. Free Rad Biol Med 1988;4:45–50.PubMedCrossRefGoogle Scholar
  46. 46.
    Roberts AJ, Spies M, Meyers SN, Moran JM, Sanders JH, Lichtenthal PR, Michaelis LL. Early and long term improvement in left ventricular performance following coronary bypass surgery. Surgery 1980;88:467–475.PubMedGoogle Scholar
  47. 47.
    Roberts AJ, Spies M, Sanders JH, Moran JM, Wilkinson CJ, Lichtenthal PR, White RL, Michaelis LL. Serial assessment of left ventricular performance following coronary artery bypass grafting. J Thorac Cardiovasc Surg 1981; 81:69–84.PubMedGoogle Scholar
  48. 48.
    Gray R, Maddhai J, Berman D, Raymond M, Waxman A, Ganz W, Matloff J, Swan HJC. Scintigraphie and hemodynamic demonstration of transient left ventricular dysfunction immediately after uncomplicated coronary artery bypass grafting. J Thorac Cardiovasc Surg 1979;77:504–510.PubMedGoogle Scholar
  49. 49.
    Reduto LA, Lawrie GM, Reid JW, Whissenand HH, Noon GP, Kanon D, DeBakey ME, Miller RR. Sequential postoperative assessment of left ventricular performance with gated cardiac blood pool imaging following aortocoronary bypass surgery. Am Heart J 1981;101:59–66.PubMedCrossRefGoogle Scholar
  50. 50.
    Mangano DT. Biventricular function after myocardial revascularization in humans: Deterioration and recovery patterns during the first 24 hours. Anesthesiology 1985;62:571–577.PubMedCrossRefGoogle Scholar
  51. 51.
    Breisblatt WM, Stein KL, Wolfe CJ, Follansbee WP, Capozzi J, Armitage JM, Hardesty RL. Acute myocardial dysfunction and recovery: A common occurrence after coronary bypass surgery. J Am Coll Cardiol 1990;15:1261–1269.PubMedCrossRefGoogle Scholar
  52. 52.
    Ballantyne CM, Verani MS, Short HD, Hyatt C, Noon GP. Delayed recovery of severely “stunned” myocardium with the support of a left ventricular assist device after coronary artery bypass graft surgery. J Am Coll Cardiol 1987;10: 710–712.PubMedCrossRefGoogle Scholar
  53. 53.
    Czer L, Hamer A, Murphy F, Bussell J, Chaux A, Bateman T, Matloff J, Gray RJ. Transient hemodynamic dysfunction after myocardial revascularization. J Thorac Cardiovasc Surg 1983;86:226–234.PubMedGoogle Scholar
  54. 54.
    Fremes SE, Weisel RD, Mickle DAG, Ivanov J, Madonik MM, Seawright SJ, Houle S, McLaughlin PR, Baird RJ. Myocardial metabolism and ventricular function following cold potassium cardioplegia. J Thorac Cardiovasc Surg 1985;89:531–546.PubMedGoogle Scholar
  55. 55.
    Fremes SE, Christakis GT, Weisel RD, Mickle DAG, Madonik MM, Ivanov J, Harding R, Seawright SJ, Houle S, McLaughlin PR, Baird RJ. A clinical trial of blood and crystalloid cardioplegia. J Thorac Cardiovasc Surg 1984;88: 725–741.Google Scholar
  56. 56.
    Bolli R, Hartley CJ, Chelly JE, Patel BS, Rabinovitz RS, Jeroudi MO, Roberts R, Noon G. An accurate non-traumatic ultrasonic method to monitor myocardial wall thickening in patients undergoing cardiac surgery. J Am Coll Cardiol 1990;15:1055–1065.PubMedCrossRefGoogle Scholar
  57. 57.
    Fine DG, Clements IP, Callahan MJ. Myocardial stunning in hypertrophic cardiomyopathy: Recovery predicted by single photon emission computed tomographie thallium-201 scintigraphy. J Am Coll Cardiol 1989;13:1415–1418.PubMedCrossRefGoogle Scholar
  58. 58.
    Luu M, Stevenson LW, Brunken RC, Drinkwater DM, Schelbert HR, Tillisch JH. Delayed recovery of revascularized myocardium after referral for cardiac transplantation. Am Heart J 1990;119:668–670.PubMedCrossRefGoogle Scholar
  59. 59.
    Mercier JC, Lando U, Kanmatsuse K, Ninomiya K, Meerbaum S, Fishbein MC, Swan HJC, Ganz W. Divergent effects of inotropic stimulation on the ischemic and severely depressed reperfused myocardium. Circulation 1982;66: 397–400.PubMedCrossRefGoogle Scholar
  60. 60.
    Ellis SE, Wynne J, Braunwald E, Henschke CI, Sandor T, Kloner RA. Response of reperfusion-salvaged, stunned myocardium to inotropic stimulation. Am Heart J 1984; 107:9–13.CrossRefGoogle Scholar
  61. 61.
    Arnold JMO, Braunwald E, Sandor T, Kloner RA. Inotropic stimulation of reperfused myocardium with dopamine: Effects on infarct size and myocardial function. J Am Coll Cardiol 1985;6:1026–1034.PubMedCrossRefGoogle Scholar
  62. 62.
    Bolli R, Zhu WX, Myers ML, Hartley CJ, Roberts R. Betaadrenergic stimulation reverses postischemic myocardial dysfunction without producing subsequent functional deterioration. Am J Cardiol 1985;56:964–968.PubMedCrossRefGoogle Scholar
  63. 63.
    Ito BR, Tate H, Kobayashi M, Schaper W. Reversibly injured, postischemic canine myocardium retains normal contractile reserve. Circ Res 1987;61:834–846.PubMedGoogle Scholar
  64. 64.
    Heusch G, Schafer S, Kroger K. Recruitment of inotropic reserve in “stunned” myocardium by the cardiotonic agent AR-L 57. Basic Res Cardiol 1988;83:602-.610.PubMedCrossRefGoogle Scholar
  65. 65.
    Becker LC, Levine JH, DiPaula AF, Guarnieri T, Aversano TR. Reversal of dysfunction in postischemic stunned myocardium by epinephrine and postextrasystolic potentiation. J Am Coll Cardiol 1986;7:580–589.PubMedCrossRefGoogle Scholar
  66. 66.
    Bolli R. Oxygen-derived free radicals and postischemic myocardial dysfunction (“stunned myocardium”). J Am Coll Cardiol 1988;12:239–249.PubMedCrossRefGoogle Scholar
  67. 67.
    Bolli R. Mechanism of myocardial “stunning”. Circulation 1990;82:723–738.PubMedCrossRefGoogle Scholar
  68. 68.
    Nicklas JM, Becker LC, Bulkley BH. Effects of repeated brief coronary occlusion on regional left ventricular function and dimension in dogs. Am J Cardiol 1985;56:473–478.CrossRefGoogle Scholar
  69. 69.
    Triana JF, Jamaluddin U, Li XY, Bolli R. Oxygen free radicals cause myocardial stunning after repetitive ischemia (Abstr). Circulation 1990;82:III36.Google Scholar
  70. 70.
    Cohn PF. Silent myocardial ischemia: Classification, prevalence, and prognosis. Am J Med 1985;79 (Suppl 3A):2–12.PubMedCrossRefGoogle Scholar
  71. 71.
    Rozanski A, Berman D, Gray R, Diamond G, Raymond M, Prouse JA, Maddahi J, Swan HJC, Matloff J. Postoperative prediction of reversible myocardial asynergy by postexercise radionuclide ventriculography. N Engl J Med 1982; 307:212.PubMedCrossRefGoogle Scholar
  72. 72.
    Akins CW, Pohost GM, DeSanctis RW, Block PC. Selection of angina-free patients with severe left ventricular dysfunction for myocardial revascularization. Am J Cardiol 1980;46:695.PubMedCrossRefGoogle Scholar
  73. 73.
    Schuster EH, Bulkley BH. Ischemic cardiomyopathy: A clinicopathologic study of fourteen patients. Am Heart J 1980;100:506–512.PubMedCrossRefGoogle Scholar
  74. 74.
    Chesebro JH, Ritman EL, Frye RL, Smith HC, Rutherford BD, Fulton RE, Pluth JR, Barnhorst DA. Regional myocardial wall thickening response to nitroglycerin. A predictor of myocardial response to aortocoronary bypass surgery. Circulation 1978;57:952.PubMedGoogle Scholar
  75. 75.
    Helfant RH, Pine R, Meister SG, Feldman MS, Trout RG, Barka VS. Nitroglycerin to unmask reversible asynergy. Correlation with posteoronary bypass ventriculography. Circulation. 1974;50:108.PubMedGoogle Scholar
  76. 76.
    Popio KA, Gorlin R, Bechtel D, Levine JA. Postextrasystolic potentiation as a predictor of potential myocardial viability. Preoperative analysis compared with studies after coronary bypass surgery. Am J Cardiol 1977;39:944.PubMedCrossRefGoogle Scholar
  77. 77.
    Hamby RI, Aintablian A, Wisoff BG, Harstein M. Response of the left ventricle in coronary artery disease to postextrasystolic potentiation. Circulation 1975;51:428.PubMedGoogle Scholar
  78. 78.
    Dyke SH, Cohn RF, Gorlin R, Sonnenblick EH. Detection of residual myocardial function in coronary artery disease using postextrasystolic potentiation. Circulation 1974;50: 694.PubMedGoogle Scholar
  79. 79.
    Nesto RW, Cohn LH, Collins JJ, Wynne J, Holman L, Cohn PF. Inotropic contractile reserve. A useful predictor of increased 5 year survival and improved postoperative left ventricular function in patients with coronary artery disease and reduced ejection fraction. Am J Cardiol 1982;50:39.PubMedCrossRefGoogle Scholar
  80. 80.
    Horn HR, Teichloz LE, Cohn PF, Herman MV, Gorlin R. Augmentation of left ventricular contraction pattern in coronary artery disease by an inotropic catecholamine. The epinephrine ventriculogram. Circulation 1974;49:1063.PubMedGoogle Scholar
  81. 81.
    Rahimtoola SH. The hibernating myocardium. Am Heart J 1989;117:211–221.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Roberto Bolli
  • Craig J. Hartley
  • Raphael S. Rabinovitz

There are no affiliations available

Personalised recommendations