Advertisement

Storage Media for Red Cells

  • O. Åkerblom
Part of the Developments in Hematology and Immunology book series (DIHI, volume 24)

Abstract

During storage in the cold, erythrocytes undergo a number of changes, some of which impair the metabolism and function of the erythrocytes, and set limits to their storage-ability. The aim of erythrocyte preservation is to minimize and delay the deleterious changes.

Keywords

Purine Nucleoside Additive Solution Organic Phosphate Adenosine Nucleotide Blood Preservation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Loutit JF, Mollison PL. Advantages of a disodium-citrate-glucose mixture as a blood preservative. Brit Med J 1943;1;:744–5.CrossRefGoogle Scholar
  2. 2.
    Rapoport S. Dimensional, osmotic, and chemical changes of erythrocytes in stored blood. I. Blood preserved in sodium citrate, neutral, and acid citrateglycose (ACD) mixtures. J clin Invest 1947; 26; 591–615.CrossRefGoogle Scholar
  3. 3.
    Gabrio BW, Donohue DM, Finch CA. Erythrocyte preservation. V. Relationship between chemical changes and viability of stored blood treated with adenosine. J clin Invest 1955; 34: 1509–12.PubMedCrossRefGoogle Scholar
  4. 4.
    Gabrio BW, Finch CA, Huennekens FM. Erythrocyte preservation: a topic in molecular biochemistry. Blood 1956; 11: 103–13.PubMedGoogle Scholar
  5. 5.
    Seidl S, Spielmann W. Comparative studies on the effect of different nucleosides in red cell preservation. In: Spielmann W, Seidl S (eds). Modern problems of blood preservation. Stuttgart: Gustav Fischer Verlag 1970: 72–7.Google Scholar
  6. 6.
    Nakao M, Nakao T, Tatibana M, Yoshikawa H, Abe T. Effect of inosine and adenine on adenosine triphosphate regeneration and shape transformation in long-stored erythrocytes. Biochem Biophys Acta 1959; 32: 564–5.PubMedCrossRefGoogle Scholar
  7. 7.
    Nakao K, Wada T, Kamiyama T, Nakao M, Nagano K. A direct relationship between adenosine triphosphate level and in vivo viability of erythrocytes. Nature 1962; 194: 877–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Simon ER, Chapman GR, Finch CA. Adenine in red cell preservation. J clin Invest 1962; 41: 351–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Simon ER, Sugita Y. Red cell preservation: Addition of adenine to improve preservation in ACD solution. Proc 10th Congr Int Soc Blood Transf, Stockholm, 1964, Basel/New York: Karger 1965: 607–15.Google Scholar
  10. 10.
    De Verdier C-H, Garby L, Hjelm M, Högman CF. Adenine in blood preservation: Posttransfusion viability and biochemical changes. Transfusion 1964; 4: 331–8.CrossRefGoogle Scholar
  11. 11.
    Akerblom O, de Verdier C-H, Finnson M, Gargy L, Högman CF, Johansson SGO. Further studies on the effect of adenine in blood preservation. Transfusion 1967; 7: 1–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Benesch R, Benesch RE. The effect of organic phosphates from the human erythrocyte on the allosteric properties of hemoglobin. Biochem Biophys Res Commun 1967; 26: 162–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Chanutin A, Curnish RR. Effect of organic and inorganic phosphates on the oxygen equilibrium of human erythrocytes. Arch Biochem Biophys 1967; 121: 96–102.PubMedCrossRefGoogle Scholar
  14. 14.
    Dawson RB, Ellis TJ. Hemoglobin function of blood stored at 4°C in ACD and CPD with adenine and inosine. Transfusion 1970; 10: 113–20.PubMedCrossRefGoogle Scholar
  15. 15.
    McManus TJ, Borgese TA. Effect of pyruvate on metabolism of inosine by erythrocytes. Fed Proc 1961;20 (abstract 65).Google Scholar
  16. 16.
    Akerblom O, Ericson A. Effects of inosine, pyruvate and inorganic phosphate on the 2,3-DPG level in fresh and stored erythrocytes. In: Rapoport S, Jung F (eds). VI. Internationales Symposium über Struktur and Funktion der Erythrocyten, Berlin 1970. Berlin: Akademie-Verlag 1972: 401–3.Google Scholar
  17. 17.
    Duhm J, Deutick B, Gerlach E. Complete restoration of oxygen transport function and 2,3-diphosphoglycerate concentration in stored blood. Transfusion 1971; 11: 147–51.PubMedCrossRefGoogle Scholar
  18. 18.
    Kreuger A, Akerblom O, Högman CF. A clinical evaluation of citrate-phosphate-dextrose-adenine blood. Vox Sang 1975; 29: 81–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Zuck TF, Bensinger TA, Peck CC, et al. The in vivo survival of red blood cells stored in modified CPD with adenine: Report of multi-institutional cooperative effort. Transfusion 1977; 17: 37482.CrossRefGoogle Scholar
  20. 20.
    Blood preservation issue. J clin Invest 1947; 26: 591–755.CrossRefGoogle Scholar
  21. 21.
    Högman CF, Hedlund K, Zetterström H. Clinical usefulness of red cells preserved in protein-poor mediums. New Engl J Med 1978; 299: 1377–82.PubMedCrossRefGoogle Scholar
  22. 22.
    Högman CF, Akerblom O, Hedlund K, Rosén I, Wiklund L. Red cell suspensions in SAGM medium. Vox Sang 1983; 45: 217–23.PubMedCrossRefGoogle Scholar
  23. 23.
    Heaton A, MiripolJ, Aster R, et al. Use ofAdsol preservation solution for prolonged storage of low viscosity AS-1 red blood cells. Brit J Haematol 1984; 57: 467–78.CrossRefGoogle Scholar
  24. 24.
    Noel L, Messiian O, Fabre G, Saint-Blancard J, Saint Paul B. Red cell in vivo survival studies of additive solutions. Beitr zur Infusionstherapie 1987; 21: 33–9.Google Scholar
  25. 25.
    Rapoport S, Guest GM. Decomposition of diphosphoglycerate in acidified blood: Its relationship to reactions of the glycolytic cycle. J Biol Chem 1939; 129: 781–90.Google Scholar
  26. 26.
    Beutler E, Duron O. Effect of pH on preservation of red cell ATP. Transfusion 1965; 5: 17–24.PubMedCrossRefGoogle Scholar
  27. 27.
    Akerblom, Kreuger A. Studies on citrate-phosphate-dextrose (CPD) blood supplemented with adenine. Vox Sang 1975; 29: 90–100.PubMedCrossRefGoogle Scholar
  28. 28.
    Dem RJ, Brewer GJ, Wiorkowski JJ. Studies on the preservation of human blood. II. The relationship of erythrocyte adenosine triphosphate levels and other in vitro measures to red cell storageability. J Lab clin Med 1967; 69: 968–78.Google Scholar
  29. 29.
    Högman CF, de Verdier CH, Borgström L. Studies on the mechanism of human red cell loss of viability during storage II. Relation between cellular morphology and viability. Vox Sang 1987; 52: 20–3.PubMedCrossRefGoogle Scholar
  30. 30.
    Wolfe LC. The membrane and the lesions of storage in preserved red cells. Transfusion 1985; 25: 185.PubMedCrossRefGoogle Scholar
  31. 31.
    Cazin P, Fabre G, Allary M, Saint-Blancard J. Etudes morphologiques comparatives des erythrocytes conservés à l’état liquide. Rev Franc Trans Immunhematol 1982; 5: 499.CrossRefGoogle Scholar
  32. 32.
    Rumsby MG. Trotter J. Allan D, Michell RH. Recovery of membrane micro-vesicles from human erythrocytes stored for transfusion: A mechanism for the erythrocyte-to-spherocyte shape formation. Biochem Soc Trans 1977; 5: 126–8.Google Scholar
  33. 33.
    Högman CF, Arro E, Hedlund K Red blood cell preservation in protein-poor media. 2. Studies of changes in red cell shape during storage.-Haematologia 1980; 13: 135–44.Google Scholar
  34. 34.
    Akerblom O, de Verdier C-H, Garby L, Högman CF. Restoration of defective oxygen-transport function of stored red blood cells by addition of inosine. Scand J clin Lab Invest 1968; 21: 245–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Bunn HF, May MH, Kocholaty WF, Shields CE. Hemoglobin function in stored blood. J clin Invest 1969; 38: 311–21.CrossRefGoogle Scholar
  36. 36.
    Valeri CR, Hirsch NM. Restoration in vivo of erythrocyte adenosine triphosphate, 2,3-diphosphoglycerate, potassium ion, and sodium ion concentrations following the transfusion of acid-citrate-dextrose-stored human red blood cells. J Lab clin Med 1969; 73: 722–33.PubMedGoogle Scholar
  37. 37.
    Garby L. Citrationenpermeabilität der roten Blutkörperchen. Folia Haematologica 1961; 78: 27.Google Scholar
  38. 38.
    FunderJ, Wieth JO. Chloride and hydrogen ion distribution between human red cells and plasma. Acta Physiol Scand 1966; 68: 234–45.CrossRefGoogle Scholar
  39. 39.
    Minikami S, Tonoda A, Tsuda S. Effect of intracellular pH (pHi) change on red cell glycolysis. In: Brewer GJ (ed). Erythrocyte structure and function. New York: Alan Liss/Elsevier 1975: 149–66.Google Scholar
  40. 40.
    Meryman HT, Hornblower M, Syring R. Extended storage of (washed) red cells at 4°C. In: Smit Sibinga CTh, Das PC, Meryman HT (eds). Cryopreservation and low temperature biology in blood transfusion. Dordrecht: Kluwer Academic Publishers 1990: 111–9.Google Scholar
  41. 41.
    Passow H. Ion and water permeability of the red blood cell. In: Bishop C, Surgenor M (eds). The red blood cell. New York: Academic Press 1964: 71147.Google Scholar
  42. 42.
    Mills GC. Effects of pH on erythrocyte metabolism. Arch Biochem Biophys 1966; 177: 487.CrossRefGoogle Scholar
  43. 43.
    Andreasson K, de Verdier CH. Akerblom O. Biochemical variables influencing the storage-ability of erythrocytes at +4°C. II. Inter-and intra-individual variations. In: Rapoport S (ed). VII. Internationales Symposium über Struktur and Funktion der Erythrozyten. Berlin: Abh Akad Wissensch DDR 1973: 641–5.Google Scholar
  44. 44.
    Bartlett GR. Effects of adenine on stored human red cells. Adv Exp Med Biol 1972; 28: 479.PubMedGoogle Scholar
  45. 45.
    Kreuger A, Ǻkerblom O. Adenine consumption in stored citrate-phosphatedextrose-adenine blood. Vox Sang 1980; 38: 156–60.PubMedCrossRefGoogle Scholar
  46. 46.
    Westman M. Studies for evaluation of blood preservation procedures with special regard to the oxygen release function and the toxicity of adenine. Dissertation. Abstracts of Uppsala Dissertations from the Faculty of Medicine, No. 181. Stockholm: Almqvist & Wiksell 1974; 28 p.Google Scholar
  47. 47.
    Wood L, Beutler E. The viability of human blood stored in phosphate-adenine media. Transfusion 1967; 7: 401–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Spielmann W, Seidl S. Summary of clinical experiences in Germany with preservative-anticoagulant solutions with newer additives. In: Greenwalt TJ, Jamieson GA. The human red cell in vitro. New York: Grune & Stratton 1974: 255–75.Google Scholar
  49. 49.
    Roigas H, Strauss D, Raderecht HJ. Verbesserte Blutkonservierung durch Zusätze von Adenin and Guanosin. Z inn Med 1969; 24: 850–6.Google Scholar
  50. 50.
    De Verdier CH, Strauss D, Ericson A, Akerblom O, Högman CF. Purine metabolism of erythrocytes preserved in adenine, adenine-inosine, and adenine-guanosine supplemented media. Transfusion 1981; 21: 397–404.PubMedCrossRefGoogle Scholar
  51. 51.
    Kretschmer V, Khan-Blouki K, Biermann E, Söhngen D, Eckle R. Improvement of blood component quality-automatic separation of blood components in a new bag system. Infusions-therapy 1988; 15: 232–9.Google Scholar
  52. 52.
    Högman CF, Hedlund K, Sahleström Y. Red cell preservation in protein-poor media. III. Protection against in vitro hemolysis. Vox Sang 1981; 41: 27481.Google Scholar
  53. 53.
    Högman CF. Anticoagulants. In: Cash JD (ed). Progress in transfusion medicine. Vol. 1. Edinburgh: Churchill Livingstone 1986: 60–77.Google Scholar
  54. 54.
    Lundsgaard-Hansen P. Component therapy of surgical hemorrhage. Bibl Haematol 1980; 46: 147–69.PubMedGoogle Scholar
  55. 55.
    Högman CF, Andreen M, Rosén I, Akerblom O, Hellsing K. Haemotherapy with red-cell concentrates and a new red cell storage medium. Lancet 1983;11:269–72.CrossRefGoogle Scholar
  56. 56.
    Högman CF, Bagge L, Thorén L. The use of blood components in surgical transfusion therapy. World J Surg 1987; 11: 2–13.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers, Boston 1990

Authors and Affiliations

  • O. Åkerblom

There are no affiliations available

Personalised recommendations