Advertisement

Regulation of Cardiac Calcium Current during Suppression of Second Messenger Intracellular Enzymatic Pathways

  • T. Asai
  • H. Terada
  • Y. M. Shuba
  • T. F. McDonald
  • D. Pelzer
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 116)

Abstract

It is well established that membrane ionic channels in heart cells are up-regulated by enhanced activation of intracellular enzymatic cascades (1–3). However, less is known about channel regulation and modulation under conditions of depressed enzymatic activity such as might occur in the failing heart. In this study, we have developed protocols to suppress pertinent enzymatic activity in guinea pig ventricular myocytes, and examined the consequences on whole-cell calcium current (ICa) and its modulation.

Keywords

Inositol Trisphosphate Phosphorylation Pathway Adenyl Cyclase System Channel Phosphorylation Modify Tyrode Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Reuter, H. Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature 301: 569–574, 1983.PubMedCrossRefGoogle Scholar
  2. 2.
    Kameyama, M., Hofmann, F. and Trautwein, W. On the mechanism of ßadrenergic regulation of the Ca channel in the guinea-pig heart. Pflügers Arch. 405: 285–293, 1985.PubMedCrossRefGoogle Scholar
  3. 2.
    Kameyama, M., Hofmann, F. and Trautwein, W. On the mechanism of ßadrenergic regulation of the Ca channel in the guinea-pig heart. Pflügers Arch. 405: 285–293, 1985.PubMedCrossRefGoogle Scholar
  4. 4.
    Trautwein, W., Kameyama, M., Hescheler, J. and Hofmann, F. Cardiac calcium channels and their transmitter modulation. Prog. Zool. 33: 163–182, 1986.Google Scholar
  5. 5.
    Rodbell, M. The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature 284: 17–22, 1980.PubMedCrossRefGoogle Scholar
  6. 6.
    Birnbaumer, L., Codina, J. Mattera, R., Yatani, A., Scherer, N., Toro, M. and Brown, A.M. Signal transduction by G proteins. Kidney Int. 32: 514537, 1987.Google Scholar
  7. 7.
    Hescheler, J., Kameyama, M. and Trautwein, W. On the mechanism of muscarinic inhibition of the cardiac Ca current. Pflügers Arch. 407: 18 2189, 1986.Google Scholar
  8. 8.
    Isenberg, G., Cerbai, E. and Klöckner, U. Ionic channels and adenosine in isolated heart cells. In: Topics and Perspectives in Adenosine Research, (edited by E. Gerlach and B.F. Becker ). Springer-Verlag, Berlin, Heidelberg, 1987, pp. 323–335.Google Scholar
  9. 9.
    Tajima, T., Tsuji, Y., Brown, J.H. and Pappano, A.J. Pertussis toxin-insensitive phosphoinositide hydrolysis, membrane depolarization, and positive inotropic effect of carbachol in chick atria. Circ. Res. 61: 436–445, 1987.PubMedGoogle Scholar
  10. 10.
    Berridge, M.J. and Irvine, R.F. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312: 315–321, 1984.PubMedCrossRefGoogle Scholar
  11. 11.
    Kaczmarek, L.K. The role of protein kinase C in the regulation of ion channels and neurotransmitter release. Trends in Neurosciences 10: 30–34, 1987CrossRefGoogle Scholar
  12. 12.
    Strong, J.A., Fox, A.P., Tsien, R.W. and Kaczmarek, L.K. Stimulation of protein kinase C recruits covert calcium channels in Aphysia bag cell neurons. Nature 325: 714–717, 1987.PubMedCrossRefGoogle Scholar
  13. 13.
    Lacerda, A.E., Rampe, D. and Brown, A.M. Effects of protein kinase C activators on cardiac Ca2+ channels. Nature 335: 249–251, 1988.PubMedCrossRefGoogle Scholar
  14. 14.
    Vilven, J. and Coronado, R. Opening of dihydropyridine calcium channels in skeletal muscle membranes by inositol trisphosphate. Nature 336: 587–589, 1988.PubMedCrossRefGoogle Scholar
  15. 15.
    Isenberg, G. and Klöckner, U. Calcium currents of isolated bovine ventricular myocytes are fast and of large amplitude. Pflügers Arch. 395: 30–41, 1982.PubMedCrossRefGoogle Scholar
  16. 16.
    Hamill, O.P., Marty, A., Neher, E., Sakmann, B. and Sigworth, F.J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch. 391: 85–100, 1981.PubMedCrossRefGoogle Scholar
  17. 17.
    Dreyer, F. and Peper, K. Iontophoretic application of acetylcholine: advantages of high resistance micropipettes in connection with an electronic current pump. Pflügers Arch. 348: 263–272, 1974.PubMedCrossRefGoogle Scholar
  18. 17.
    Dreyer, F. and Peper, K. Iontophoretic application of acetylcholine: advantages of high resistance micropipettes in connection with an electronic current pump. Pflügers Arch. 348: 263–272, 1974.PubMedCrossRefGoogle Scholar
  19. 19.
    Kostyuk, P.G. and Krishtal, O.A. Effects of calcium and calcium-chelating agents on the inward and outward current in the membrane of mollusc neurones. J. Physiol. 270: 569–580, 1977.PubMedGoogle Scholar
  20. 20.
    Yount, R.G. ATP analogs. Adv. Enzymol. 34: 1–36, 1975.Google Scholar
  21. 21.
    Whitehouse, S., Feramisco, J.R., Casnellie, J.E., Krebs, E.G., Walsh, D.A. Studies on the kinetic mechanism of the catalytic subunit of the cAMPdependent protein kinase. J. Biol. Chem. 258: 3693–3701, 1983.PubMedGoogle Scholar
  22. 22.
    Van Haastert, D., van Driel, R., Jastorff, B., Baraniak, J., Stec, W. and de Wit, R. Competitive cAMP antagonists for cAMP-receptor proteins. J. Biol. Chem. 259: 10020–10040, 1984.PubMedGoogle Scholar
  23. 23.
    McDonald, T.F. and MacLeod, D.P. DNP-induced dissipation of ATP in anoxic ventricular muscle. J. Physiol. 229: 583–599, 1973.PubMedGoogle Scholar
  24. 24.
    Yatani, A., Codina, J., Imoto, Y., Reeves, J.P., Birnbaumer, L. and Brown, A.M. A G protein directly regulates mammalian cardiac calcium channels. Science 238: 1288–1292, 1987.PubMedCrossRefGoogle Scholar
  25. 25.
    Simmons, M.A. and Hartzell, H.C. Role of phosphodiesterase in regulation of calcium current in isolated cardiac myocytes. Mol. Pharmacol. 33: 664–671, 1988.PubMedGoogle Scholar
  26. 26.
    Seamon, K. and Daly, J. Forskolin, cyclic AMP and cellular physiology. Trends in Pharmacological Sciences 4: 120–123, 1983.CrossRefGoogle Scholar
  27. 27.
    Fleming, J.W., Strawbridge, R.A. and Watanabe, A.M. Muscarinic receptor regulation of cardiac adenylate cyclase activity. J. Mol. Cell. Cardiol. 19: 47–61, 1987.PubMedCrossRefGoogle Scholar
  28. 28.
    Fischmeister, R. and Hartzell, H.C. Mechanism of action of acetylcholine on calcium current in single cells from frog ventricle. J. Physiol. 376: 183–202, 1986.PubMedGoogle Scholar
  29. 28.
    Fischmeister, R. and Hartzell, H.C. Mechanism of action of acetylcholine on calcium current in single cells from frog ventricle. J. Physiol. 376: 183–202, 1986.PubMedGoogle Scholar
  30. 30.
    Breitwieser, G.E. and Szabo, G. Uncoupling of cardiac muscarinic and,Oadrenergic receptors from ion channels by a guanine nucleotide analogue. Nature 317: 538–540, 1985.PubMedCrossRefGoogle Scholar
  31. 31.
    Belles, B., Malécot, C.O., Hescheler, J. and Trautwein, W. “Run-down” of the Ca current during long whole-cell recordings in guinea pig heart cells: role of phosphorylation and intracellular calcium. Pflügers Arch. 411: 353–360, 1988.PubMedCrossRefGoogle Scholar
  32. 32.
    Imoto, Y., Yatani, A., Reeves, J.P., Codina, J., Birnbaumer, L. and Brown, A.M. α-Subunit of Gs directly activates cardiac calcium channels in lipid bilayers. A.. J. Physiol. 255: H722–H728, 1988.Google Scholar
  33. 33.
    Yatani, A., Imoto, Y., Codina, J., Hamilton, S.L., Brown, A.M. and Birnbaumer, L. The stimulatory G protein of adenylyl cyclase, Gs, also stimulates dihydropyridine-sensitive Ca2+ channels. Evidence for direct regulation independent of phosphorylation by cAMP-dependent protein kinase or stimulation by a dihydropyridine agonist. J. Biol. Chem. 263: 9887–9895, 1988.Google Scholar
  34. 34.
    Yatani, A. and Brown, A.M. Rapid ß-adrenergic modulation of cardiac calcium channel currents by a fast G protein pathway. Science 245: 71–74, 1989.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • T. Asai
    • 1
    • 2
  • H. Terada
    • 1
    • 2
  • Y. M. Shuba
    • 1
    • 2
  • T. F. McDonald
    • 1
    • 2
  • D. Pelzer
    • 1
    • 2
  1. 1.II Physiologisches InstitutUniversität des SaarlandesHomburg/SaarGermany
  2. 2.Department of Physiology and BiophysicsDalhousie UniversityHalifaxCanada

Personalised recommendations