Cardiac Phosphatidylethanolamine N-Methylation in Normal and Diabetic Rats Treated with L-Propionylcarnitine

  • C. Ou
  • S. Majumder
  • J. Dai
  • V. Panagia
  • N. S. Dhalla
  • R. Ferrari
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 116)


The mitochondrial oxidation of long-chain fatty acids is a major pathway for energy production in the heart. L-carnitine, a naturally occurring highly polar compound, is essential for transporting long-chain fatty acids across the inner mitochondrial membrane to the site of oxidation, as well as for the export of intramitochondrially produced short-chain acyl esters and for the disposal of unphysiological acyl metabolites (1,2). In fact, myocardial carnitine deficiency has been documented in several heart diseases, both in humans (3,4) and in experimental animal models (5,6). Accordingly, carnitine deficiency can be seen to be associated with an energy deficit arising from the unavailability of fatty acids within the mitochondria. Moreover, the accumulation of long-chain fatty acids and their derivatives, fatty acyl CoAthio esters and fatty acylcarnitine esters due to carnitine deficiency could produce deleterious effects on cardiac structure and function. These metabolites are active detergents and bind to the cell membranes (7), and there is evidence (7,8) that these lipid intermediates alter the functional properties of the myocardial membranes. It has also been suggested that the long-chain acyl derivatives may contribute to the decline of myocardial contractility and may cause intracellular Ca2+ overload (8).


Diabetic Animal Diabetic Cardiomyopathy Diabetic Heart Methyl Transferase Carnitine Deficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bieber, L.L. Carnitine. Ann. Rev. Biochem. 57: 261–283, 1988.CrossRefGoogle Scholar
  2. 2.
    Siliprandi, N., Sartorelli, L., Ciman, M. and Di Lisa, F. Carnitine: metabolism and clinical chemistry. Clin. Chim. Acta 183: 3–12, 1989.PubMedCrossRefGoogle Scholar
  3. 3.
    Tripp, M.E., Katcher, M.L., Peters, H.A., Gilbert, E.F., Arya, S., Hodag, R.J. and Shug, A.L. Systemic carnitine deficiency presenting as familial endocardial fibroelastosis. N. Engl. J. Med. 305: 385–398, 1981.PubMedCrossRefGoogle Scholar
  4. 4.
    Kondrup, J. and Mortensen, S.A. Endomyocardial levels of free and total carnitine in patients with cardiomyopathy. Heart Failure 5: 37–40, 1989.Google Scholar
  5. 5.
    Borum, P.R., Park, J.H., Low, P.K. and Roelofs, R.E. Altered tissue carnitine levels in animals with hereditary muscular dystrophy. J. Neurol. Sci. 38: 113–121, 1978.CrossRefGoogle Scholar
  6. 6.
    Reibel, D.K., Ubo, C.E. and Kent, R.L. Altered coenzyme A and carnitine metabolism in pressure-overload hypertrophied hearts. Am. J. Physiol. 244: H839 - H843, 1983.PubMedGoogle Scholar
  7. 7.
    Katz, A.M., Freston, J.W., Messineo, F.C. and Herbette, L.G. Membrane damage and the pathogenesis of cardiomyoapthies. J. Mol. Cell. Cardiol. 17 (Suppl. 2): 11–20, 1985.PubMedCrossRefGoogle Scholar
  8. 8.
    Lamers, J.M.J., Stinis, J.T., Montfoort, A. and Hulsmann, W.C. Modulation of membrane function by lipid intermediates: a possible role in myocardial ischemia. In: Myocardial Ischemia and Lipid Metabolism (edited by R. Ferrari, A. Katz, A. Shug and O. Visioli), Plenum Publishing Corp., New York, 1984, pp. 107–125.Google Scholar
  9. 9.
    Crews, F.T. Phospholipid methylation and membrane function. In: Phospholipids and Cellular Regulation, (edited by J.F. Kuo ). CRC Press, Boca Raton, 1985, Vol. 1, pp. 131–158.Google Scholar
  10. 10.
    Panagia, V., Ganguly, P.K. and Dhalla, N.S. Characterization of heart sarcolemmal phospholipid methylation. Biochim. Biophys. Acta. 792: 245253, 1984.Google Scholar
  11. 11.
    Panagia, V., Ganguly, P.K., Okumura, K. and Dhalla, N.S. Subcellular localization of phosphatidylethanolamine N-methylation in rat heart. J. Mol. Cell. Cardiol. 17: 1151–1159, 1985.PubMedCrossRefGoogle Scholar
  12. 12.
    Panagia, V., Okumura, K., Shah, K.R. and Dhalla, N.S. Modification of sarcolemmal phosphatidylethanolamine N-methylation during heart hypertrophy. Am. J. Physiol. 252: H8 - H15, 1987.Google Scholar
  13. 13.
    Okumura, K., Panagia, V., Beamish, R.E. and Dhalla, N.S. Biphasic change in the sarcolemmal phosphatidylethanolamine N-methylation activity in catecholamine-induced cardiomyopathy. J. Mol. Cell. Cardiol. 19: 357366, 1987.Google Scholar
  14. 14.
    Panagia, V., Okumura, K., Makino, N. and Dhalla, N.S. Stimulation of Cat’ pump in rat heart sarcolemma by phosphatidylethanolamine N-methylation. Biochim. Biophys. Acta 856: 383–387, 1986.PubMedCrossRefGoogle Scholar
  15. 15.
    Ganguly, P.K., Panagia, V., Okumura, K. and Dhalla, N.S. Activation of Cat+-stimulated ATPase by phospholipid N-methylation in cardiac sarcoplamic reticulum. Biochem. Biophys. Res. Commun. 130: 472–478, 1985.PubMedCrossRefGoogle Scholar
  16. 16.
    Panagia, V., Makino, N., Ganguly, P.K. and Dhalla, N.S. Inhibition of Na+-Ca2+ exchange in heart sarcolemmal vesicles by phosphatidylethanolamine N-methylation. Eur. J. Biochem. 166: 597–603, 1987.PubMedCrossRefGoogle Scholar
  17. 17.
    Liu, M-S. and Yang, Y. Phospholipid methylation in canine myocardium: kinetic characteristics and the effect of endotoxin administration. Biochem. Med. Metabol. Biol. 38: 57–68, 1987.CrossRefGoogle Scholar
  18. 18.
    Ganguly, P.K., Rice, K.M., Panagia, V. and Dhalla, N.S. Sarcolemmal phosphatidylethanolamine N-methylation in diabetic cardiomyopathy. Circ. Res. 55: 504–512, 1984.PubMedGoogle Scholar
  19. 19.
    Pierce, G.N., Beamish, R.E. and Dhalla, N.S. Heart dysfunction in diabetes. CRC Press, Boca Raton, 1988, pp. 245.Google Scholar
  20. 20.
    Rodrigues, B., Xiang, H. and McNeil, J.H. Effect of L-carnitine treatment on lipid metabolism and cardaic performance in chronically diabetic rats. Diabetes 37: 1358–1364, 1988.PubMedCrossRefGoogle Scholar
  21. 21.
    Kenno, K.A. and Severson, D.L. Lipolysis in isolated myocardial cells from diabetic rat hearts. Am. J. Physiol. 249: H1024 - H1030, 1985.PubMedGoogle Scholar
  22. 21.
    Kenno, K.A. and Severson, D.L. Lipolysis in isolated myocardial cells from diabetic rat hearts. Am. J. Physiol. 249: H1024 - H1030, 1985.PubMedGoogle Scholar
  23. 23.
    Liedtke, A.J., DeMaison, L. and Nellis, S.H. Effects of L-propionylcarnitine on mechanical recovery during reflow in intact hearts. Am. J. Physiol. 255: H169 - H176, 1988.PubMedGoogle Scholar
  24. 24.
    Ferrari, R., Ciampalini, G., Agnoletti, G., Cargnoni, A., Ceconi, C. and Visioli, O. Effect of L-carnitine derivatives on heart mitochondrial damage induced by lipid peroxidation. Pharmacol. Res. Commun. 20: 125132, 1988.Google Scholar
  25. 24.
    Ferrari, R., Ciampalini, G., Agnoletti, G., Cargnoni, A., Ceconi, C. and Visioli, O. Effect of L-carnitine derivatives on heart mitochondrial damage induced by lipid peroxidation. Pharmacol. Res. Commun. 20: 125132, 1988.Google Scholar
  26. 26.
    Makino, N., Dhalla, K.S., Elimban, V. and Dhalla, N.S. Sarcolemmal Ca2+ transport in streptozotocin-induced diabetic cardiomyopathy in rats. Am. J. Physiol. 253: E202 - E207, 1987.PubMedGoogle Scholar
  27. 27.
    Ganguly, P.K., Pierce, G.N., Dhalla, K.S. and Dhalla, N.S. Defective sarcoplasmic reticular calcium transport in diabetic cardiomyopathy. Am. J. Physiol. 244: E528–E535, 1984.Google Scholar
  28. 28.
    Dhalla, N.S., Anand-Srivastava, M.B., Tuana, B.S. and Khandelwal, R.L. Solubilization of a calcium dependent adenonine triphosphatase from rat heart sarcolemma. J. Mol. Cell. Cardiol. 13: 413–423, 1981.CrossRefGoogle Scholar
  29. 29.
    Pitts, B.J.R. Stoichiometry of sodium-calcium exchange in cardiac sarcolemmal vesicles. J. Biol. Chem. 254: 6232–6235, 1979.PubMedGoogle Scholar
  30. 30.
    Sulakhe, P.V. and Dhalla, N.S. Excitation-contraction coupling in heart. VII. Calcium accumulation in subcellular particles in congestive heart failure. J. Clin. Invest. 50: 1019–1027, 1971.PubMedCrossRefGoogle Scholar
  31. 31.
    Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275, 1951.PubMedGoogle Scholar
  32. 32.
    Panagia, V., Taira, Y. and Dhalla, N.S. Membrane Ca2+ pump and phospholipid methylation activities in diabetic cardiomyopathy. FASEB J. 3: A984, 4403, 1989 (abstract).Google Scholar
  33. 33.
    Gupta, M.P., Panagia, V. and Dhalla, N.S. Phospholipid N-methylationdependent alterations of cardiac contractile function by L-methionine. J. Pharmacol. Exp. Ther. 245: 664–672, 1988.PubMedGoogle Scholar
  34. 34.
    Whitmer, J.T. L-carnitine treatment improves cardiac performance and restores high-energy phosphate pools in cardiomyopathic Syrian hamster. Circ. Res. 61: 396–408, 1987.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • C. Ou
    • 1
  • S. Majumder
    • 1
  • J. Dai
    • 1
  • V. Panagia
    • 1
  • N. S. Dhalla
    • 1
  • R. Ferrari
    • 2
  1. 1.Division of Cardiovascular Sciences, St. Boniface General Hospital Research Centre and Departments of Anatomy and Physiology, Faculty of MedicineUniversity of ManitobaWinnipegCanada
  2. 2.Cattedra di Cardiologia, Facoltá di Medicina e ChirurgiaUniversitá di BresciaBresciaItaly

Personalised recommendations