Skip to main content

Uremic Toxins & Dialysis

  • Chapter

Part of the book series: Developments in Nephrology ((DINE,volume 29))

Abstract

The symptoms and signs of renal failure, often called uremia, are reversible. Common reversal techniques include manipulation of protein in the diet, transplantation, and various types of therapeutic dialysis. Others include hemofiltration and sorbent therapy. The term uremia literally means urine in the blood. It refers to a variety of nonspecific complaints and physical signs that patients inevitably manifest as their renal function falls to below 5% of normal (see tables 1.1 and 1.2). The glomerular filtration rate, measured in the clinical laboratory, is the usual yardstick of renal function and admittedly correlates only crudely with renal damage. The syndrome of uremia expresses itself in different ways in different patients, but there are common typical elements. These serve as a focus for clinicians who would treat uremic patients and for investigators searching for the searching for the elusive toxins responsible for the syndrome. The failure of over 150 years of research to identify a specific toxin or toxins to account for the entire syndrome has led some to propose alternate theories. These are reviewed below. Excellent reviews of uremic toxins are available in standard textbooks (1,2,3). These toxins are briefly summarized here, with special emphasis on how they relate to dialysis, including some of this author’s biases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   369.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergstrom J, Furst P: Uraemic toxins, in Replacement of Renal Function by Dialysis (2ed), Drukker W, Parsons FM, Maher JF (eds), Boston, Martinus Nijhoff, pp 354–390, 1983.

    Google Scholar 

  2. Powell D, Bergstrom J, Dzurik R, Gulyassy P, Lockwood D, Phillips L: Toxins and inhibitors in chronic renal failure. Am J Kidney Dis 7:292–299, 1986.

    PubMed  CAS  Google Scholar 

  3. Vanholder R, Schoots A, Ringoir S: Uremic toxicity, in Replacement of Renal Function by Dialysis (3ed), Maher JF(ed), Dordrecht, Kluwer Academic Publishers, pp 4–19, 1989.

    Google Scholar 

  4. Schreiner GE, Maher JF:Uremia: Biochemistry, Pathogenesis and Treatment, Springfield IL, Charles C Thomas Publishers, 1961.

    Google Scholar 

  5. Mitch WE, Walser M, Steinman TI, Hill S, Zeger S, Tungsanga K: The effect of a keto acid-amino acid supplement to a restricted diet on the progression of chronic renal failure. N Engl J Med 311:623–629, 1984.

    PubMed  CAS  Google Scholar 

  6. Giovannetti S, Maggiore Q: A low nitrogen diet with proteins of high biological value for severe chronic uremia. Lancet 1:1000, 1964.

    PubMed  CAS  Google Scholar 

  7. Giordano C, DePascale C, DeCristofaro D, Capodiscasa G, Balestrieri C, Baczyk K: Protein malnutrition in the treatment of chronic uremia, in Nutrition in Renal Disease, Berlyne GM (ed), Baltimore, The Williams & Wilkins Co., pp 23–37, 1968.

    Google Scholar 

  8. Gulyassy PF, Aviram A, Peters JH: Evaluation of amino acid and protein requirements in chronic uremia. Arch Intern Med 126:855–859, 1970.

    PubMed  CAS  Google Scholar 

  9. Mitch WE, Klahr S (eds): Nutrition and the Kidney, Boston, Little, Brown, 1988.

    Google Scholar 

  10. Pullman TN, Alving AS, Dein RJ, Landowne M: The influence of dietary protein intake on specific renal function in normal man. J Lab Clin Med 44:320–332, 1954.

    PubMed  CAS  Google Scholar 

  11. Brenner BM, Meyer TW, Hostetter TH: Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation and intrinsic renal disease. N Engl J Med 307:652–659, 1982.

    PubMed  CAS  Google Scholar 

  12. Bosch JP, Saccaggi A, Lauer A, Ronco C, Belledonne M, Glabman S: Renal functional reserve in humans: effect of protein intake on glomerular filtration rate. Am J Med 75:943–50, 1983.

    PubMed  CAS  Google Scholar 

  13. Ihle BU, Becker GJ, Whitworth JA, Charlwood RA, Kincaid-Smith PS: The effect of protein restriction on the progression of renal insufficiency. New Engl J Med 321:1773–1777, 1989.

    PubMed  CAS  Google Scholar 

  14. Peters JH, Gotch FA, Keen M, Berridge BJ Jr, Chao WR: Investigation of the clearance and generation rate of endogenous peptides in normal subjects and uremic patients. Trans Am Soc Artif Intern Organs 20:417, 1974.

    PubMed  Google Scholar 

  15. Bliss S: The cause of sore mouth in nephritis. J Biol Chem 121:425, 1937.

    CAS  Google Scholar 

  16. Williams JL, Dick GF: The excretion of nonprotein nitrogen substances by the intestine. JAMA 100:484, 1933.

    CAS  Google Scholar 

  17. Carter D, Einheber A, Baure H, Rosen H, Burns WF: The role of the microbial flora in uremia. II. Uremic colitis, cardiovascular lesions, and biochemical observations. J Exp Med 123:251, 1966.

    PubMed  CAS  Google Scholar 

  18. Simenhoff ML, Burke JF, Saukkonen JJ, Wesson LG, Schaedler RW: Amine metabolism and the small bowel in uraemia. Lancet 2:818, 1976.

    PubMed  CAS  Google Scholar 

  19. Simenhoff ML, Saukkonen JJ, Burke JF, Wesson LG, Schaedler RW, Gordon SJ: Bacterial populations of the small intestine in uremia. Nephron 22:63, 1978.

    PubMed  CAS  Google Scholar 

  20. Gruskin SE, Tolman DE, Wagoner RD: Oral manifestations of uremia. Minn Med 53:495, 1970.

    PubMed  CAS  Google Scholar 

  21. Black DR: Nephritic stomatitis. Urol Cutan Rev 46:75, 1942.

    Google Scholar 

  22. Balestri PL, Barsotti G, Camici M, Giovannetti S: High plasma fibrinogen levels and reduced fibrinolytic activity in dogs intoxicated with methylguan-didine. Clin Nephrol 2:81, 1974.

    PubMed  CAS  Google Scholar 

  23. Balestri PL, Biagini M, Rindi P, Giovanneti S: Uremic toxins. Arch Intern Med 126:843, 1970.

    PubMed  CAS  Google Scholar 

  24. Johnson WJ, Hagge WW, Wagoner RD, Dinapoli RP, Rosevear JW: Effects of urea loading in patients with far-advanced renal failure. Mayo Clin Proc 47:21–29, 1972.

    PubMed  CAS  Google Scholar 

  25. Mirsky IA, Diengott D, Perisutti G: Insulinase-inhibitory action of metabolic derivatives of L-tryptophan. Proc Soc Exp Biol Med 95:154, 1957

    PubMed  CAS  Google Scholar 

  26. Record BN, Princhard JW, Gallagher BB, Seligson D: Phenolic acids in experimental uremia. I. Potential role of phenolic acids in the neurological manifestations of uremia. Arch Neurol 21:387, 1969.

    PubMed  CAS  Google Scholar 

  27. Mason MF, Resnik H, Mino AS, Rainey J, Pilcher C, Harrison TR: Mechanism of experimental uremia. Arch Intern Med 60:312, 1937.

    CAS  Google Scholar 

  28. Bennett WM, Porter GA: Endogenous creatinine clearance as a clinical measure of glomerular filtration rate. Br Med J 4:84–86, 1971.

    PubMed  CAS  Google Scholar 

  29. Bauer JH, Brooks CS, Burch RN: Renal function studies in man with advanced renal insufficiency. Am J Kidney Dis 2:30–35, 1982.

    PubMed  CAS  Google Scholar 

  30. Rose WC, Dimmit FW: Experimental studies on creatine and creatinine. VII. The fate of creatine and creatinine when administered to man. J Biol Chem 26:345, 1916.

    CAS  Google Scholar 

  31. Shannon JA: The renal excretion of creatinine in man. J Clin Invest 14:403, 1935.

    PubMed  CAS  Google Scholar 

  32. Lowrie EG, Laird NM, Parker TF, Sargent JA: Effect of the hemodialysis prescription on patient morbidity: Report from the National Cooperative Dialysis Study. N Engl J Med 305:1176–1181, 1981.

    PubMed  CAS  Google Scholar 

  33. Gulyassy P, Igarashi P: Endogenous solutes as potential indicators of renal function (abstract). Int Soc of Nephrol Abstracts, 1990.

    Google Scholar 

  34. Bemert JT, Bell CJ, Guntupalli J, Hannon HW: Pseudouridine as an endogenous renal clearance marker. Clin Chem 34:1011–1017, 1988.

    Google Scholar 

  35. Schoots AC, Dijkstra JB, Ringoir SMG, Vanholder R, Cramers CA: Are the classical markers sufficient to describe uremic solute accumulation in dialyzed patients? Hippurates reconsidered. Clin Chem 34:1022–1029, 1988.

    PubMed  CAS  Google Scholar 

  36. Lundin PA III: Prolonged survival on hemodialysis, in Replacement of Renal Function by Dialysis (3ed), Maher JF(ed), Dordrecht, Kluwer Academic Publishers, 1989.

    Google Scholar 

  37. Abel JJ, Rowntree LC, Turner BB: On the removal of diffusible substances from the circulating blood by means of dialysis. Trans Assoc Am Physicians 28:51, 1913.

    Google Scholar 

  38. Quadracci LJ, Cambi V, Christopher TG, Harker LA, Striker GE: Assay of serum abnormalities in uremic and dialysis patients: Evidence for depletion of vital substances in hemodialysis. Trans Am Soc Artif Intern Organs 17:96–101, 1971.

    PubMed  CAS  Google Scholar 

  39. Fraser DR, Kodicek E: Unique biosynthesis by kidney of a biologically active vitamin D metabolite. Nature 228:764, 1970.

    PubMed  CAS  Google Scholar 

  40. Eschbach JW, Egrie JC, Downing MR, Browne JK, Adamson JW: Correction of the anemia of end-stage renal disease with recombinant human erythropoietin: Results of a combined phase I and II clinical trial. N Engl J Med 316:73–78, 1987.

    PubMed  CAS  Google Scholar 

  41. Stanbury SW: Azotemic renal osteodystrophy. Br Med Bull 13:57–60, 1957.

    PubMed  CAS  Google Scholar 

  42. Bricker NS: On the pathogenesis of the uremic state: An exposition of the “Trade-off hypothesis.” N Engl J Med 286:1093–1099, 1972.

    PubMed  CAS  Google Scholar 

  43. Slatopolsky E, Caglar S, Gradowska L, Canterbury J, Reiss E, Bricker NS: On the prevention of secondary hyperparathyroidism in experimental chronic renal disease using “proportional reduction” of dietary phosphorus intake. Kidney Int 2:147, 1972.

    PubMed  CAS  Google Scholar 

  44. Slatopolsky E, Caglar S, Penneil DB, Taggart JM, Canterbury J, Reiss E, Bricker NS: On the pathogenesis of hyperparathyroidism in chronic experimental renal insufficiency in the dog. J Clin Invest 50:492, 1971.

    PubMed  CAS  Google Scholar 

  45. Massry SG, Goldstein DA: Role of parathyroid hormone in uremic toxicity. Kidney Int 13 (Suppl 8):S39–42, 1978.

    Google Scholar 

  46. Bricker NS, Fine LG: The trade-off hypothesis: current status. Kidney Int 13 (Suppl 8):S5–8, 1978.

    Google Scholar 

  47. Adler AJ, Ferran N, Berlyne GM: Effect of inorganic phosphate on serum ionized calcium concentration in vitro: a reassessment of the “trade-off hypothesis.” Kidney Int 28:932–935, 1985.

    PubMed  CAS  Google Scholar 

  48. Gulyassy PF, Bottini AT, Jarrard EA, Stanfel LA: Isolation of inhibitors of ligand:albumin binding from uremic body fluids and normal urine. Kidney Int 24 (Suppl 16):S238–242, 1983.

    Google Scholar 

  49. Wilkinson GR: Plasma and tissue binding considerations in drug disposition (review). Toxicol Appl Pharmacol 69:427–465, 1983.

    Google Scholar 

  50. Marshall EK, Vickers JL: The mechanism of the elimination of phe-nolsulphonephthalein by the kidney — a proof of secretion by the convoluted tubules. Bull Johns Hopkins Hosp 34:1–7, 1923.

    Google Scholar 

  51. Weiner IM: Transport of weak acids and bases, in Handbook of Physiology, Orloff J, Berliner RW (eds), Washington, D.C., American Physiological Society, pp 521–554, 1973.

    Google Scholar 

  52. Forster RP: Renal transport mechanisms. Fed Proc 26:1008–1019, 1967.

    PubMed  CAS  Google Scholar 

  53. Pitts RF: Tubular secretion, in Physiology of the Kidney and Body Fluids (3ed), Chicago, Year Book Medical Publishers, pp 140–157, 1974.

    Google Scholar 

  54. Tanaka K, Hine DG, West-Dull A, Lynn TB: Gas-chromatographic method of analysis for urinary organic acids. I. Retention indices of 155 metabolically important compounds. Clin Chem 26:1839–1846, 1980.

    PubMed  CAS  Google Scholar 

  55. Gulyassy PF, Depner TA: Impaired binding of drugs and endogenous ligands in renal diseases. Am J Kidney Dis, 2:578–601, 1983.

    PubMed  CAS  Google Scholar 

  56. Fehske KJ, Muller WE, Wollen U: The location of drug binding sites in human serum albumin. Biochem Pharmacol 30:687–692, 1981.

    PubMed  CAS  Google Scholar 

  57. Sudlow G, Birkett DJ, Wade DN: The characterization of two specific drug binding sites on human serum albumin. Mol Pharmacol 11:824–832, 1975.

    PubMed  CAS  Google Scholar 

  58. Tavares-Almeida I, Gulyassy PF, Depner TA, Jarrard EA: Aromatic amino acid metabolites as potential protein binding inhibitors in human uremic plasma. Biochem Pharmacol 34:2431–2438, 1985.

    PubMed  CAS  Google Scholar 

  59. Craig WA, Evenson MA, Sarver KP, Wagnild JP: Correction of protein binding defect in uremic sera by charcoal treatment. J Lab Clin Med 87:637–647, 1976.

    PubMed  CAS  Google Scholar 

  60. Depner TA, Gulyassy PF: Plasma protein binding in uremia: extraction and characterization of an inhibitor. Kidney Int 18:86–94, 1980.

    PubMed  CAS  Google Scholar 

  61. Depner TA: Suppression of tubular anion transport by an inhibitor of serum protein binding in uremia. Kidney Int 20:511–518, 1981.

    PubMed  CAS  Google Scholar 

  62. Depner TA, Sanaka T, Stanfel LA: Suppression of PAH transport in the isolated perfused kidney by an inhibitor of protein binding in uremia. Am J Kidney Dis 3:280–286, 1984.

    PubMed  CAS  Google Scholar 

  63. Gulyassy PF, Jarrard E, Stanfel LA: Contributions of hippurate, indoxyl sulfate, and o-hydroxyhippurate to impaired ligand binding by plasma in azotemic humans. Biochem Pharmacol 36:4215–4220, 1987.

    PubMed  CAS  Google Scholar 

  64. Mitch W, Brusilow S: Benzoate-induced changes in glycine and urea metabolism in patients with chronic renal failure. J Pharmacol Exp Ther 222:572–576, 1982.

    PubMed  CAS  Google Scholar 

  65. Dzurik R, Spustova V, Gerykova M: Pathogenesis and consequences of the alteration of glucose metabolism in renal insufficiency, in Uremic toxins, Ringoir S, Vanholder R, Massry S (eds), New York, Plenum Publishing Co., p 105, 1987.

    Google Scholar 

  66. Spustova, V, Dzurik R, Gerykova M: Hippurate participation in the inhibition of glucose utilization in renal failure. Czech Med 10:79–89, 1987.

    PubMed  CAS  Google Scholar 

  67. Vanholder R, Schoots A, Cramers C, DeSmet R, Van Landschoot N, Wizeman V, Botella J, Ringoir S: Hippuric acid as a marker, in Uremic Toxins, Ringoir S, Vanholder R, Massry S (eds), New York, Plenum Publishing Co., 1987.

    Google Scholar 

  68. Liebich HM, Pickert A, Tetschner B: Gas chromatographic and gas-chroma*** tographic-mass spectrometric analysis of organic acids in plasma of patients with chronic renal failure. J Chromatogr 289:259–266, 1984.

    PubMed  CAS  Google Scholar 

  69. Lindup WE, Bishop KA, Collier R: Drug binding defect of uraemic plasma: contribution of endogenous binding inhibitors. Hoechst Symposium, Portugal, August 24-September 28, 1985.

    Google Scholar 

  70. Mabuchi H, Nakahashi H: A major endogenous ligand substance involved in renal failure. Nephron 49:277–280, 1988.

    PubMed  CAS  Google Scholar 

  71. Mabuchi H, Nakahashi H: Inhibition of hepatic glutathion S-transferases by a major endogenous ligand substance present in uremic serum. Nephron 49:281–283, 1988.

    PubMed  CAS  Google Scholar 

  72. Mabuchi H, Nakahashi H, Hamajima T, Aikawa I, Oka T: The effect of renal transplantation on a major endogenous ligand retained in uremic serum. Am J Kidney Dis 13:49–54, 1989.

    PubMed  CAS  Google Scholar 

  73. Pardridge WM, Oldendorf WH, Cancilla P, Frank HJ: Blood-brain barrier: interface between internal medicine and the brain (clinical conference), Ann Intern Med 105(l):82–95, 1986.

    PubMed  CAS  Google Scholar 

  74. Ockner RK, Weisiger RA, Gollan JL: Hepatic uptake of albumin-bound substances: albumin receptor concept. Am J Physiol 245:G13–18, 1983.

    PubMed  CAS  Google Scholar 

  75. Besseghir K, Mosig D, Roch-Ramel F: Facilitation by serum albumin of renal tubular secretion of organic anions. Am J Physiol 256:F475–484, 1989.

    PubMed  CAS  Google Scholar 

  76. Bassingthwaighte JB, Noodleman L, van der Vusse G, Little SE, Glatz JFC, Reneman RS: Albumin-fatty acid-endothelial membrane interactions and fatty acid transport in the heart. Fed Proc 46:686, 1987.

    Google Scholar 

  77. Meijer DKF, Van Der Sluijs P: Covalent and noncovalent protein binding of drugs: implications for hepatic clearance, storage, and cell-specific drug delivery. Pharmaceut Res 6:105–118, 1989.

    CAS  Google Scholar 

  78. Dubey RK, McAllister CB, Inoue M, Wilkinson GR: Plasma binding and transport of diazepam across the blood-brain barrier: no evidence for in vivo enhanced dissociation. J Clin Invest 84:1155–59, 1989.

    PubMed  CAS  Google Scholar 

  79. Smith KR, Borchardt RT: Permeability and mechanism of albumin, cationized albumin, and glycosylated albumin transcellular transport across monolayers of bovine brain capillary endothelial cells. Pharmaceut Res 6:466–473, 1989.

    CAS  Google Scholar 

  80. Babb AL, Popovich RP, Christopher TG, Scribner BH: The genesis of the square meter-hour hypothesis. Trans Am Soc Artif Intern Organs 17:81–91, 1971.

    PubMed  CAS  Google Scholar 

  81. Scribner BH, Farrell PC, Milutinovic J, Babb AL: Evolution of the middle molecule hypothesis, in Proceedings of the Fifth International Congress of Nephrology, Villarreal H (ed), Basel, Karger, pp 190–199, 1974.

    Google Scholar 

  82. Solangi K, Lutton JD, Abraham NG, Ascensao JL, Goodman A, Levere RD: Isolation and purification of erythropoiesis inhibitory activity from uremic sera. Nephron 48:22–27, 1988.

    PubMed  CAS  Google Scholar 

  83. Bommer J, Ritz E, Waldherr R: Silicone-induced splenomegaly: treatment of pancytopenia by splenectomy in a patient on hemodialysis. N Engl J Med 305:1077–1079, 1981.

    PubMed  CAS  Google Scholar 

  84. Hyde SE, Sadler JH: Red cell destruction in hemodialysis. Trans Am Soc Artif Intern Organs 15:50–53, 1969.

    PubMed  Google Scholar 

  85. Leong AS Y, Disney APS, Gove DW: Spallation andmigration of silicone from blood-pump tubing in patients on hemodialysis. N Engl J Med 306:135–140, 1982.

    PubMed  CAS  Google Scholar 

  86. Morley AR, Barron D, Thompson P, Hoenich NA, Harbottle S, Kerr DNS: Surface alterations in dialysis roller pump inserts: a scanning electron microscopy study. J Biomed Eng 8:255–261, 1986.

    PubMed  CAS  Google Scholar 

  87. Sherrard DJ: Aluminum toxicity. The Kidney 20:31–35, 1988.

    Google Scholar 

  88. Yawata Y, Howe R, Jacob HS: Abnormal red cell metabolism causing hemolysis in uremia. A defect potentiated by tap water hemodialysis. Ann Intern Med 79:362, 1973.

    PubMed  CAS  Google Scholar 

  89. Kjellstrand CM, Eaton JW, Yawatta Y, Swofford H, Kolpin CF, Buselmeier TJ, von Hartitzsch B, Jacob HS: Hemolysis in dialyzed patients caused by chlo-ramines. Nephron 13:427–433, 1974.

    PubMed  CAS  Google Scholar 

  90. Peterson NJ, Carson JA, Favero MS: Bacterial endotoxin in new and reused hemodialyzers: a potential cause of endotoxemia. Trans Am Soc Artif Intern Organs 27:155–160, 1981.

    Google Scholar 

  91. Bommer J, Wilhelms OH, Barth HP, Schindele H: Anaphylactoid reactions in dialysis patients: role of ethylene-oxide. Lancet 2:1382–1384, 1985.

    PubMed  CAS  Google Scholar 

  92. Gibson TP, Briggs WA, Boone BJ: Delivery of di-2-ethylhexyl phthalate to patients during hemodialysis. J Lab Clin Med 87:519–524, 1976.

    PubMed  CAS  Google Scholar 

  93. Ono K, Tatsukawa R, Wakimoto T: Migration of plasticizer from hemodialysis blood tubing. JAMA 234:948, 1975.

    PubMed  CAS  Google Scholar 

  94. Gutch CF, Eskelson CD, Ziegler E, Ogden DA: 2-Chloroethanol as a toxic residue in dialysis supplies sterilized with ethylene oxide. Dial Transplant 5:21–25, 1976.

    Google Scholar 

  95. Craddock PR, Fehr J, Brigham KL, Kronenberg RS, Jacob HS: Complement and leukocyte-mediated pulmonary dysfunction in hemodialysis. New Engl J Med 296:770–774, 1977.

    Google Scholar 

  96. Blumenstein M, Schmidt B, Ward RA, Ziegler-Heitbrock HWL, Gurland HJ: Altered interleukin-1 production in patients undergoing hemodialysis. Nephron 50:277–281, 1988.

    PubMed  CAS  Google Scholar 

  97. Hakim RM, Fearon DT, Lazarus MJ: Biocompatibility of dialysis membranes: effects of chronic complement activation. Kidney Int 26:194–200, 1984.

    PubMed  CAS  Google Scholar 

  98. Mion CM, Hegstrom RM, Boen ST, Scribner BH: Substitution of sodium acetate for sodium bicarbonate in the bath fluid for hemodialysis. Trans Am Soc Artif Intern Organs 10:110–113, 1964.

    PubMed  CAS  Google Scholar 

  99. Keshaviah P: The role of acetate in the etiology of symptomatic hypotension. Artif Organs 6:378, 1982.

    PubMed  CAS  Google Scholar 

  100. Hakim RM, Pontzer M-A, Tilton D, Lazarus JM, Gottlieb MN: Effects of acetate and bicarbonate dialysate in stable chronic dialysis patients. Kidney Int 28:535–540, 1985.

    PubMed  CAS  Google Scholar 

  101. Fenves AZ, Emmett M, White MG, Green way G, Michaels DB: Carpal tunnel syndrome with cystic bone lesions secondary to amyloidosis in chronic hemodialysis patients. Am J Kidney Dis 7:130–134, 1986.

    PubMed  CAS  Google Scholar 

  102. Ullian ME, Hammond WS, Alfrey AC, Schultz A, Molitoris BA: Beta-2-microglobulin-associated amyloidosis in chronic hemodialysis patients with carpal tunnel syndrome. Medicine 68:107–115, 1989.

    PubMed  CAS  Google Scholar 

  103. Gejyo F, Odani S, Yamada T, Honma N, Saito H, Suzuki Y, Nakagawa Y, Kobayashi H, Maruyama Y, Hirasawa Y, Suzuki M, Arakawa M: B2-mi-croglobulin: a new form of amyloid protein associated with chronic hemodialysis. Kidney Int 30:385–390, 1986.

    PubMed  CAS  Google Scholar 

  104. Laird NM, Berkey CS, Lowrie EG: Modeling success or failure of dialysis therapy: the National Cooperative Dialysis Study. Kidney Int 23 (Suppl 13):S101–106, 1983.

    Google Scholar 

  105. Merrill JP, Legrain M, Hoigne R: Observations on the role of urea in uremia. Am J Med 14:519, 1953.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Kluwer Academic Publishers

About this chapter

Cite this chapter

Depner, T.A. (1991). Uremic Toxins & Dialysis. In: Prescribing Hemodialysis. Developments in Nephrology, vol 29. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1509-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1509-4_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8811-4

  • Online ISBN: 978-1-4613-1509-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics