Bifunctional chelating agents for radiometal-labeled monoclonal antibodies

  • Ramaswamy Subramanian
  • Claude F. Meares
Part of the Cancer Treatment and Research book series (CTAR, volume 51)


Recently there has been a great deal of interest in attaching metal ions to proteins. Since a variety of metal ions possess interesting chemical, physical, nuclear, and magnetic properties, they can be employed to probe the behavior of biologic systems. For example, fluorescent-labeled proteins, proteins containing paramagnetic chelates, and proteins bound to photosensitive metal chelates have been studied [1]. When the metal is radioactive and the protein is an antibody that has high specficity for tumors, the resultant chelate-antibody conjugate can be employed for cancer diagnosis. Monoclonal antibodies that possess a high affinity for tumor-associated antigens can now be prepared due to the technique developed by Kohler and Milstein [2]. By attaching a radionuclide to such a monoclonal antibody of predetermined specificity, one can selectively localize the radioactivity at tumor sites. This principle has been employed in developing new pharmaceuticals for use in radioimmuno-diagnosis and, in certain cases, radioimmunotherapy [3,4]. In this review we will briefly examine the chemical aspects of bifunctional chelating agents for linking radiometals to monoclonal antibodies.


Albumin Lymphoma Oncol Lysine Thiol 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Meares, C.F., and Goodwin, D.A. (1984) Linking radiometals to proteins with bifunctional chelating agents. J. Protein Chem. 3:215–228.CrossRefGoogle Scholar
  2. 2.
    Kohler, G., and Milstein, C. (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature (London) 256:495–497.CrossRefGoogle Scholar
  3. 3.
    Goldenberg, D.M., Deland, F., Kim, E., Bennett, S., Primus, F.J., van Nagell, J.R., Jr., Estes, N., DeSimone, P., and Rayburn, P. (1978) Use of radiolabeled antibodies to carcino-embryonic antigen for detection and localization of diverse cancers by external photo-scanning. N. Engl. J. Med. 298:1384–1388.PubMedCrossRefGoogle Scholar
  4. 4.
    Order, S.E., Klein, J.L., Ettinger, D., Adelson, P., Siegelman, S., and Leichner, P. (1980) Use of isotopic immunoglobulin in therapy. Cancer Res. 40:3001–3007.PubMedGoogle Scholar
  5. 5.
    Sundberg, M.W., Meares, C.F., Goodwin, D.A., and Diamanti, CI. (1974) Chelating agents for the binding of metal ions to macromolecules. Nature (London) 250:587–588.CrossRefGoogle Scholar
  6. 6.
    Krejcarek, G.E., and Tucker, K.L. (1977) Co valent attachment of chelating groups to macromolecules. Biochem. Biophys. Res. Commun. 77:581–585.PubMedCrossRefGoogle Scholar
  7. 7.
    Loberg, M.D., Cooper, M., Harvey, E., Callery, P., and Faith, W. (1976) Development of new radiopharmaceuticals based on N-substitution of iminodiacetic acid. J. Nucl. Med. 17:633–640.PubMedGoogle Scholar
  8. 8.
    Reardan, D.T., Meares, C.F., Goodwin, D.A., McTigue, M., Davis, G.S., Stone, M.R., Leung, J.P., Bartholomew, R.M., and Frincke, J.M. (1985) Antibodies against metal chelates. Nature (London) 316:265–268.CrossRefGoogle Scholar
  9. 9.
    Sillen, L.G., and Martell, A.E., eds. (1964) Stability constants of metal ion complexes. London: Chemical Society.Google Scholar
  10. 10.
    Meares, CF. (1986) Chelating agents for the binding of metal ions to antibodies. Nucl. Med. Biol. 13:311–318.Google Scholar
  11. 11.
    Yeh, S.M., Meares, C.F., and Goodwin, D.A. (1979) Decomposition rates of radiopharmaceutical indium chelates in serum. J. Radioanal. Chem. 53:327–336.CrossRefGoogle Scholar
  12. 12.
    Yeh, S.M., Sherman, D.G., and Meares, C.F. (1979) A new route to bifunctional chelating agents: Conversion of aminoacids to analogs of ethylenedinitrilotetracetic acid. Anal. Biochem. 100:152–159.PubMedCrossRefGoogle Scholar
  13. 13.
    DeRiemer, L.H., Meares, C.F., Goodwin, D.A., and Diamanti, C.I. (1981) BLEDTA II: Synthesis of a new tumor-visualizing derivative of Co(III)-bleomycin. J. Labelled Compd. & Radiopharm. 18:1517–1534.CrossRefGoogle Scholar
  14. 14.
    Meares, C.F., Anderson, L.D., Yeh, S.M., Sherman, D.G., and Goodwin, D.A. (1981) Synthesis of bifunctional chelating agents from amino acids. J. Labelled Compd. & Radiopharm. 18:160.Google Scholar
  15. 15.
    Abusaleh, A., and Meares, C.F. (1984) Excitation and de-excitation processes in lanthanide chelates bearing aromatic side chains. Photochem. Photobiol. 39:763–769.PubMedCrossRefGoogle Scholar
  16. 16.
    Benisek, W.F., and Richards, F.M. (1968) Attachment of metal chelating functional groups to macromolecules. J. Biol. Chem. 243:4267–4271.PubMedGoogle Scholar
  17. 17.
    Chang, C.-H., Meares, C.F., and Goodwin, D.A. (1982) Bifunctional chelating agents: Linking radiometals to biological molecules. In: Lambrecht, R.M., and Morcos, C.N. (eds.), Applications of Nuclear and Radiochemistry. New York: Pergamon, pp. 103–114.Google Scholar
  18. 18.
    De Préval, C. (1982) Immunoglobulins. In: Bach, J.-F. (ed.), Immunology. New York: John Wiley and Sons, p. 177.Google Scholar
  19. 19.
    Meares, C.F., McCall, M.J., Reardan, D.J., Goodwin, D.A., Diamanti, C.I., and McTigue, M. (1984) Conjugation of antibodies with bifunctional chelating agents: Isothiocyanate and bromoacetamide reagents, methods of analysis and subsequent addition of metal ions. Anal. Biochem. 142:68–78.PubMedCrossRefGoogle Scholar
  20. 20.
    Leung, C.S.H., Meares, C.F., and Goodwin, D.A. (1978) The attachment of metal-chelating groups to proteins: Tagging of albumin in dizaonium coupling and the use of products as radiopharmaceuticals. Int. J. Radiat. Isot. 29:687–692.CrossRefGoogle Scholar
  21. 21.
    Meares, C.F., Goodwin, D.A., Leung, C.S.H., Girgis, A.Y., Silvester, D.J., Nunn, A.D., and Lavender, P.J. (1976) Covalent attachment of metal chelates to proteins: The stability in vivo and in vitro of the conjugate of albumin with a chelate of indium-111. Proc. Natl. Acad. Sci. USA 73:3803–3806.PubMedCrossRefGoogle Scholar
  22. 22.
    Hnatowich, D.J., Layne, W.W., and Childs, R.L. (1983) Radioactive labeling of antibody: A simple and efficient method. Science 220:613–615.PubMedCrossRefGoogle Scholar
  23. 23.
    Penefsky, H.S. (1979) A centrifuged column procedure for the measurement of ligand binding by beef heart. In: Fleischner, S. (ed.), Methods in Enzymology, Vol 56, Part G. New York: Academic Press, pp. 527–530.Google Scholar
  24. 24.
    Welch, M.J., and Welch, T.J. (1975) Solution chemistry of carrier-free indium. In: Subramanian, G., Rhodes, B.A., Cooper, J.F., and Sodd, V.J. (eds.), Radiopharmaceuticals. New York: Soc. Nucl. Med., pp. 73–79.Google Scholar
  25. 25.
    White, A., Handler, P., and Smith, E.L. (1968) Principles of Biochemistry, 4th ed. New York: McGraw Hill, p. 711.Google Scholar
  26. 26.
    Ritzmann, S.E., and Daniels, J.C. (1982) Serum electrophoresis and total serum proteins. In: Ritzmann, S.E., and Daniels, J.C. (eds.), Serum Protein Abnormalities: Diagnostic and Clinical Aspects. New York: Alan R. Liss, pp. 3–26.Google Scholar
  27. 27.
    Hosain, F., McIntyre, P.A., Poulose, K., Stein, R.S., and Wagner, H.N., Jr. (1969) Binding of trace amounts of ionic indium-113m to plasma transferrin. Clin. Chim. Acta 24:69–75.PubMedCrossRefGoogle Scholar
  28. 28.
    Sarkar, B., Laussac, J.-P., and Lau, S. (1983) Transport forms of copper in human serum. In: Sarkar, B. (ed.), Biological Aspects of Metals and Metal Related Diseases. New York: Raven Press, pp. 23–40.Google Scholar
  29. 29.
    Mathias, C.J., and Welch, M.J. (1987) Studies on the entrapment of indium-111 in the liver following the administration of proteins labeled using bifunctional chelates (abstract). J. Nucl. Med. 28:657.Google Scholar
  30. 30.
    Cole, W.C., DeNardo, S.J., Meares, C.F., McCall, M.J., DeNardo, G.L., Epstein, A.L., O’Brien, H.A., and Moi, M.K. (1987) Comparative serum stability of radiochelates for antibody radipharmaceuticals. J. Nucl. Med. 28:83–90.PubMedGoogle Scholar
  31. 31.
    Melson, G.A., ed. (1979) Coordination Chemistry of Macrocyclic Compounds. New York: Plenum Press.Google Scholar
  32. 32.
    Goldenberg, D.M., Kim, E.E., Deland, F., van Nagell, J.R., Jr., and Javadpour, N. (1980) Clinical radioimmunodetection of cancer with radioactive antibodies to human chorionic gonadotropin. Science 208:1284–1286.PubMedCrossRefGoogle Scholar
  33. 33.
    Order, S.E., Klein, J.L., Leichner, P.K., Frincke, J., Lollo, C., and Carlo, D.J. (1986) 90Yttrium antiferritin — a new therapeutic radiolabeled cancer. Int. J. Radiat. Oncol. Biol. Phys. 12:277–281.PubMedCrossRefGoogle Scholar
  34. 34.
    DeNardo, S.J., Jungerman, J.A., DeNardo, G.L., Lagunas-Solar, M.C., Cole, W.C., and Meares, C.F. (1985) The choice of radionuclides for radioimmunotherapy. In: Developing Role of Short-Lived Radionuclides in Nuclear Medicine Practice. DOE Symp. Ser. 56, 401–414. DOE Technical Information Center, Conf.820523-NT15.Google Scholar
  35. 35.
    Carrasquillo, J.A., Mulshine, J.L., Bunn, P.A., Jr., Reynolds, J.C., Foon, K.A., Schroff, R.W., Perentesis, P., Steis, R.G., Keenan, A.M., Horowitz, and Larson, S.M. (1987) Indium-111 monoclonal antibody is superior to iodine-131 T101 in imaging of cutaneous T-cell lymphoma. J. Nucl. Med. 28:281–287.PubMedGoogle Scholar
  36. 36.
    Goodwin, D.A., Meares, C.F., David, G.F., McTigue, M., McCall, M.J., Frincke, J.M., Stone, M.R., Bartholomew, R.M., and Leung, J.P. (1986) Monoclonal antibodies as reversible equilibrium carriers of radiopharmaceuticals. Nucl. Med. Biol. 13:383–391.Google Scholar
  37. 37.
    Brennan, M., Davidson, P.F., and Paulus, H. (1985) Preparation of bispecific antibodies by chemical recombination of monoclonal immunoglobulin G1 fragments. Science 229:81–83.PubMedCrossRefGoogle Scholar
  38. 38.
    Haseman, M.K., Goodwin, D.A., Meares, C.F., Kaminski, M.S., Wensel, T.G., McCall, M.J., and Levy, R. (1986) Metabolizable 111In-chelate conjugated monoclonal antibody for radioimmunodetection of lymphoma in mice. Eur. J. Nucl. Med. 12:455–460.PubMedCrossRefGoogle Scholar
  39. 39.
    Buraggi, G.L., Callegaro, L., Turrin, A., Cascinelli, N., Attili, A., Emanuelli, H., Gasparini, M., Deleide, G., Plassio, G., Dovis, M., Mariani, G., Natali, P.G., Scassellati, G.A., Rosa, U., and Ferrone, S. (1984) Immunoscintigraphy with 123I, 99mTc and 11lIn labeled F(ab′)2 fragments of monoclonal antibodies to a human high molecular weight melonoma associated antigen. J. Nucl. Med. All. Sci. 28:283–295.Google Scholar
  40. 40.
    Kabat, E.A. (1976) Structural Concepts in Immunology and Immunochemistry, 2nd ed. San Francisco, Holt, Rinehart, & Winston, pp. 270–272.Google Scholar
  41. 41.
    Rodwell, J.D., and McKearn, T.J. (1987) Antibody conjugates for the delivery of compounds to target sites, US Patent No. 4,671,958.Google Scholar
  42. 42.
    Moi, M.K., Meares, C.F., McCall, M.J., Cole, W.C., and DeNardo, S.J. (1985) Copper chelates as probes of biological systems: Stable copper complexes with a macrocyclic bifunctional chelating agent. Anal. Biochem. 148:249–253.PubMedCrossRefGoogle Scholar
  43. 43.
    Brechbeil, M.W., Gansow, O.A., Atcher, R.W., Schlom, J., Esteban, J., Simpson, D.E., and Colcher, D. (1986) Synthesis of 1-(p-isothiocyanatobenzyl) derivatives of DTPA and EDTA: Antibody labeling and tumor imaging studies. Inorg. Chem. 25:2272–2281.Google Scholar
  44. 44.
    McAfee, J.G., and Thakur, M.L. (1976) Survey of radioactive agents for in vitro labeling of phagocytic leukocytes: I. Soluble agents. J. Nucl. Med. 17:480–487.PubMedGoogle Scholar
  45. 45.
    Hnatowich, D.J., Virzi, F., and Doherty, P.W. (1985) DTPA-coupled antibodies labeled with yttrium-90. J. Nucl. Med. 26:503–509.PubMedGoogle Scholar
  46. 46.
    Cole, D.A., Mercer-Smith, J.A., and Taylor, W.A. (1986) Lymphatic uptake of copper-67 meso-tetra(4-carboxyphenyl) porphine, an imaging agent for inflamed lymph nodes. INOR 46, Abstracts of Papers, 192nd National Meeting, Anaheim, CA. Washington, D.C.: American Chemical Society.Google Scholar
  47. 47.
    Khaw, B.A., Strauss, H.W., Carvallio, A., Locke, E., Gold, H.K., and Haber, E. (1982) Technetium-99m labeling of antibodies to cardiac myosin Fab to human fibrinogen. J. Nucl. Med. 23:1011–1019.PubMedGoogle Scholar
  48. 48.
    Rhodes, B.A., and Burchiel, S. (1983) Radiolabeling of antibodies with technetium-99m. In: Burchiel, S.W., and Rhodes, B.A. (eds.), Radioimmunoimaging and Radioimmunotherapy. New York: Elsevier, pp. 207–222.Google Scholar
  49. 49.
    Kozak, R.W., Atcher, R.W., Gansow, O.A., Friedman, A.M., Hines, J.J., and Waldmannn, T.A. (1986) Bismuth-212-labeled anti-Tac monoclonal antibody: α-particle-emitting radionuclides as modalities for radioimmunotherapy. Proc. Natl. Acad. Sci. USA 83:474–478.PubMedCrossRefGoogle Scholar
  50. 50.
    Srivastava, S.C., Meinken, G.E., and Steplewski, Z. (1987) Preliminary results on labeling antibodies and other radiopharmaceuticals with Pb-203 (abstract). J. Nucl. Med. 28:721.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Ramaswamy Subramanian
  • Claude F. Meares

There are no affiliations available

Personalised recommendations