Thermal Analysis of Laser Ablation of Cardiovascular Tissue

  • Massoud Motamedi
  • Gerald L. LeCarpentier
  • Jorge H. Torres
  • A. J. Welch
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 103)


The past eight years have witnessed dramatic developments of catheters and laser systems for angioplasty. Laser radiation provides a powerful and unique capability for the ablation and/or thermal remodeling of obstructing atheromatous plaque or thrombus. The utility of lasers for angioplasty is linked closely to the monochromaticity and coherence properties of the laser beam as well as the ability to deliver high-power laser irradiation through percutaneous fiberoptic catheters.


Laser Ablation Laser Physics Beam Diameter Ablation Process Infrared Camera 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sanborn TA, Cumberland DC, Taylor ID, Ryan TJ (1985). Human percutaneous laser thermal angioplasty. Circulation 72: 11–1210.Google Scholar
  2. 2.
    Spears JR, Reyes RV, James LM, Sinofsky EL (1988). Laser balloon angioplasty: initial clinical percutaneouse coronary results. 61st Scientific Sessions, American Heart Association, Washington, DC.Google Scholar
  3. 3.
    White RA, Kopchok GE, Donayre CE, Peng SK et al. (1988). Mechanism of tissue fusion in argon laser-welded vein-artery anastomoses. Lasers Surg Med 8: 83.PubMedCrossRefGoogle Scholar
  4. 4.
    Litvack F, Grundfest WS, Goldenberg T, Laudenslager J, et al. (1988). Pulsed laser angioplasty: Wavelength power and energy dependencies relevant to clinical application. Lasers Surg Med 8: 61.CrossRefGoogle Scholar
  5. 5.
    Takata AN, Zaneveld L, Richter W (1977). Laser-induced thermal damage in skin. Report SAM-TR-77-38, USAF School of Aerospace Medicine, Brooks AFB, Texas.Google Scholar
  6. 6.
    Prince MR, LaMuraglia GM, Teng P, Deutsch TF, et al. (1978). Preferential ablation of calcified arterial plaque with laser–induced plasmas. IEEE J Quan Electron 23: 1783.CrossRefGoogle Scholar
  7. 7.
    Langerholc J, (1979). Moving phase transitions in laser-irradiated biological tissue. App Optics 13: 2286.CrossRefGoogle Scholar
  8. 8.
    Partovi F, Izatt JA, Cothern RM, Kitrell C, et al. (1987). A model for thermal ablation of biological tissue using laser radiation. Lasers Surg Med 7: 141.PubMedCrossRefGoogle Scholar
  9. 9.
    Rastegar S (1987). Laser ablation of biological tissue. Ph.D. Dissertation, University of Texas at Austin, TX.Google Scholar
  10. 10.
    Yoon G, Welch AJ, Motamedi M, van Gemert MJC (1987). Development and application of three–dimensional light distribution model for laser irradiated tissue. IEEE J Quant Electro 23: 1721.CrossRefGoogle Scholar
  11. 11.
    Takata AN, Zaneveld I., Richter W (1978). Laser-induced thermal damage of skin. Final report SAM-TR-77-38, U.S. Air Force, Aero– space Medical Division, Brooks Air Force Base, Texas (1978).Google Scholar
  12. 12.
    Henriques FC, Moritz AR (1947). Studies of thermal injury, I. The conduction of heat to and through skin and the temperature attained therein. A theoretical and experimental investigation. Am J Pathol 23: 531.Google Scholar
  13. 13.
    Barns FS (1975). Applications of lasers to biology and medicine. Proceedings of IEEE 63: 1269.CrossRefGoogle Scholar
  14. 14.
    Motamedi M, Rastegar S. LeCarpentier GL, Welch AJ (1989). Light and temperature distribution in laser irradiated tissue: The effect of anisotropic scattering and refractive index. App Optics, in press.Google Scholar
  15. 15.
    Rastegar S, Motamedi M, Welch AJ, Hayes LH: A theoritical study of the efect of optical properties in laser ablation of tissue. IEEE transactions on BME, in press.Google Scholar
  16. 16.
    Welch AJ, Wissler EH, Priebe LA (1980). Significance of blood flow in calculations of temperature in laser irradiated tissue. IEEE Transactions on Biomedical Engineering, BME- 27: 164–167.CrossRefGoogle Scholar
  17. 17.
    Jacques SL, Prahl SA (1987). Modeling optical and thermal distributions in tissue during laser irradiation. Laser in Surg Med 6: 494.CrossRefGoogle Scholar
  18. 18.
    Welch AJ (1984). The thermal response of laser irradiated tissue. IEEE J Quant Electro QE- 20: 1471–1481.CrossRefGoogle Scholar
  19. 19.
    Torres JH (1986). Effects of a laser heated metallic probe on normal and atherosclerotic human aorta. Master’s Thesis, University of Texas at Austin, TX.Google Scholar
  20. 20.
    Torres JH, Motamedi M, Welch AJ, Pearce JA. Disparity of aborption of argon laser radition by fibrous versus fatty plaque: Implications for laser angioplasty submitted for publication.Google Scholar
  21. 21.
    Welch AJ, Bradley AB, Torres JH, Motamedi M, et al. (1987). Laser probe ablation of normal and atherosclerotic human aorta in-vitro: First thermographic and histologic analysis. Circulation 76: 1353–1363.PubMedCrossRefGoogle Scholar
  22. 22.
    Carslow HS, Jaeger C (1959). Conduction of Heat in Solids. Clarendon Press, Oxford.Google Scholar
  23. 23.
    Lunardini VJ (1981). Heat transfer in cold climates, Van Nostrand Reinhold Company, New York.Google Scholar
  24. 24.
    Dabby FW, Paek UC (1972). High-intensity laser-induced vaporization and explosion of solid material. IEEE Quan Electron 8: 106.CrossRefGoogle Scholar
  25. 25.
    LeCarpentier GL, Rastegar S, Welch AJ, Prahl SA, Hussein H (1988). Comparative analysis of laser ablation using direct laser irradiation and a metal contact probe. Proceedings of the World Congress on Medical Physics and Biomedical Engineering 1988, San Antonio, TX.Google Scholar
  26. 26.
    LeCarpentier GL, Motamedi M, Rastegar S, Welch AJ (1989). Simultaneous analysis of thermal and mechanical events during CW laser ablation of biological media. Proceedings of SPIE 1989, Los Angles, CA.Google Scholar
  27. 27.
    LeCarpentier GL, Motamedi M, McMath LP, Welch AJ (1989). The effect of wavelength on ablation mechanisms during CW laser irradiation: Argon versus Nd:YAG (1.32 (µm). Proceedings of IEEE EMBS ’89, Seattle, Washington.Google Scholar
  28. 28.
    Valvano JW, Chitsabesan B (1987). Thermal conductivity and diffusivity of arterial wall and atherosclerotic plaque. Lasers in Life Sci 1:3.Google Scholar
  29. 29.
    Agah R, Pearce JA, Welch AJ (1987). Quantitative characterization of arterial tissue thermal damage. Lasers Surg Med 7: 62.Google Scholar
  30. 30.
    Agah R, (1988). Quantitative characterization of arterial tissue thermal damage. Master’s Thesis, University of Texas Austin, TX.Google Scholar
  31. 31.
    LeCarpentier GL, Motamedi M, McMath LP, Welch AJ (1989). CW laser ablation of vascular tissue: Analysis of thermal and mechanical events. Submitted for publication.Google Scholar
  32. 32.
    LeCarpentier GL, Motamedi M (1989). Comparison of vascular tissue response to CW Nd:YAG 1.32 µm and 1.06 µm radiation: A thermographic study. In preparation.Google Scholar
  33. 33.
    Hale GM, Querry MR (1973). Optical constants of water in the 200-nm to 200-µm wavelength region. Appl Optics 12, (3): 555– 563.CrossRefGoogle Scholar
  34. 34.
    Spells KE (I960). The thermal conductivities of some biological fluids. Med Biol 5: 139–153.Google Scholar
  35. 35.
    Boley BA, Weiner GH (1985). Theory of Thermal Stress. Krieger Publishing, Malabar, FL.Google Scholar
  36. 36.
    Motamedi M, Torres JH, Welch AJ (1989). CW laser ablation of calcific tissue. Proceedings, Radiological Society of North America, Chicago IL (submitted).Google Scholar
  37. 37.
    Abela GS, ‘Hot tip’?: Another method of laser vascular recanalization. Lasers Surg Med 5:103.Google Scholar
  38. 38.
    Torres JH, Welch AJ, Ghidoni JJ (1988). Adventitial temperature and extent of damage during in vitro application of a laser thermal probe to canine arteries. Proceeding of the World Congress on Biomedical Engineering and Medical Physics 1988. San Antonio, TX.Google Scholar
  39. 39.
    Motamedi M, LeCarpentier GL, Cheong WF, Dalmia P, et al. (1989). Photo–ablation of canine myocardium: comparison of argon and Nd:YAG lasers. Proceedings of AHA 1989. New Orleans, LA (submitted).Google Scholar
  40. 40.
    Motamedi M, Welch AJ, Cheong WF, Ghaffari S, et al. (1988). Thermal lensing in biologic medium. IEEE J Quant Electron QE 24:693– 696.Google Scholar
  41. 41.
    Motamedi M, LeCarpentier GL, Torres JH, Welch AJ. The influence of beam diameter on thermal response of tissue during CW laser irradiation. In preparation.Google Scholar
  42. 42.
    Welch AJ, Pearce JA, Valvano JW, Hayes LH, et al. (1984). Effects of laser radiation on plaque and vessel wall. Lasers Surg Med 5: 251–264.CrossRefGoogle Scholar
  43. 43.
    Welch AJ, Pullhamus GD (1984). Measurement and prediction of thermal injury in the retina of the rhesus monkey. IEEE J BME 31: 633.CrossRefGoogle Scholar
  44. 44.
    Sinofsky E, Dumont MG (1988). Temperature measurement using silicia and fluoride based optical fibers for biological applications. SPIE 907: 131–136.Google Scholar
  45. 45.
    Incorpera FP, De Witt DP (1981). Fundamentals of Heat Transfer. John Wiley & Sons, New York.Google Scholar
  46. 46.
    De Witt (1986). Inferring temperature from optical radiation measurements. Appi Optics 25: 596–601.CrossRefGoogle Scholar
  47. 47.
    Pearce JA, Motamedi M, Agah R, Welch AJ (1986). Thermographic measurements of tissue temperature during laser angioplasty. Heat and mass transfer in the microcirculation of thermally significant vessels. HTD-61: 49–54.Google Scholar
  48. 48.
    Cain CP, Welch AJ (1974). Measured and predicted laser induced temperature rise in the rabbit fundus. Invest Ophthalmol 13: 60.PubMedGoogle Scholar
  49. 49.
    Welch AJ, Motamedi M (1985). Interaction of laser light with biological tissue. Photo-Biology and Photo-Medicine, Mattellucci and Chester, eds. Plenum, New York.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Massoud Motamedi
  • Gerald L. LeCarpentier
  • Jorge H. Torres
  • A. J. Welch

There are no affiliations available

Personalised recommendations