Photosensitizer-Enhanced Laser Angioplasty

  • G. Michael Vincent
  • George S. Abela
  • Enrico Barbieri
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 103)


The treatment of atherosclerotic vascular disease using laser light holds enormous appeal because of the potential for removal of all or a large part of the atherosclerotic material. This would be a significant advantage over currently available techniques, such as coronary bypass surgery or balloon dilatation, in which the plaque remains within the vascular space. Laser angioplasty, therefore, holds promise for a more effective and substantially longer lasting therapeutic benefit.


Atherosclerotic Plaque Photodynamic Therapy Preferential Accumulation Atheromatous Plaque Human Atherosclerotic Plaque 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lee G, Ikeda RM, Theis JH, Chau MC, et al. (1984). Acute and chronic complications of laser angioplasty: Vascular wall damage and formation of aneurysms in the atherosclerotic rabbit. Am J Cardiol53: 290–293.PubMedCrossRefGoogle Scholar
  2. 2.
    Abela GS, Normann SJ, Cohen DM, Franzini D, et al. (1985). Laser recanalization of occluded atherosclerotic arteries in vivo and in vitro. Circulation71: 403–411.PubMedCrossRefGoogle Scholar
  3. 3.
    Isner JM, Donaldson RJ, Funai JT, Deckelbaum LI, et al. (1985). Factors contributing to perforations resulting from laser coronary angioplasty: Observations in an intact human postmortem preparation of intraoperative laser coronary angioplasty. Circulation72 (11): 191–199.Google Scholar
  4. 4.
    Crea F, Fenech A, Smith W, Conti CR, Abela GS (1985). Laser recanalization of acutely thrombosed coronary arteries in live dogs: Early results. J Am Coll Cardiol6: 1052–1056.PubMedCrossRefGoogle Scholar
  5. 5.
    Choy DSJ, Stertzer SH, Myler RK, Fournial G (1984). Human coronary laser recanalization. Clin Cardiol7: 377–389.PubMedGoogle Scholar
  6. 6.
    Grundfest WS, Litvack F, Forrester JS, Goldenberg T, et al. (1985). Laser ablation of human atherosclerotic plaque without adjacent tissue injury. J Am Coll Cardiol 5: 929–933.PubMedCrossRefGoogle Scholar
  7. 7.
    Anderson PS, Gustafson A, Stenram U, Svanberg K, Svanberg S (1987). Diagnosis of arterial wall atherosclerosis using laser-induced fluorescence. Lasers Med Sci2: 261–266.CrossRefGoogle Scholar
  8. 8.
    Spears JR, Serur J, Shropshire D, Paulin S (1983). Fluorescence of experimental atheromatous plaques with hematoporphyrin derivative. J Clin Invest71: 395–399.PubMedCrossRefGoogle Scholar
  9. 9.
    Prince MR, Deustch TF, Mathews-Roth MM, Margolis R, et al. (1986). Preferential light absorption in atheromas in vitro: Implications for laser angioplasty. J Clin Invest78: 295–302.PubMedCrossRefGoogle Scholar
  10. 10.
    Blankenhorn DH (I960). The infiltration of carotenoids into human atheromas and xanthomas. Ann Int Med53: 944–954.Google Scholar
  11. 11.
    La Muraglia GM, Murray S, Anderson RR, Prince MR (1988). Effect of pulse duration on selective ablation of atherosclerotic plaque by 480 to 490 nanometer laser radiation. Lasers Surg Med8: 18–21.CrossRefGoogle Scholar
  12. 12.
    Lindgren I, Raekallio J (1966). Accumulation of tetracyclines in atherosclerotic lesions of human aorta. Acta Pathol Microbiol Scand66: 323–326.PubMedGoogle Scholar
  13. 13.
    Kessel D (1984). Hematoporphyrin and HPD: Photophysics, photochemistry, and phototherapy. Photochem Photobiol39: 851–859.PubMedCrossRefGoogle Scholar
  14. 14.
    Dougherty TJ (1984). The structure of the active component of hematoporphyrin derivative. In Porphyrin Localization and Treatment of Tumors, DR Doiron, CJ Gomer, eds. New York: Alan R Liss, pp. 301–314.Google Scholar
  15. 15.
    Weishaupt KR, Gomer CJ, Dougherty TJ (1976). Identification of singlet oxygen as the cytotoxic agent in photo-inactivation of a murine tumor. Cancer Res 36:2326–2329.Google Scholar
  16. 16.
    Salet C (1986). Hematoporphyrin and hematoporphyrin derivative photosensitization of mitochondria. Biochemie 68: 865–868.CrossRefGoogle Scholar
  17. 17.
    Hilf R, Muraut R, Narayanau U, Gibson S (1986). Relationship of mitochondrial function and cellular adenosine triphosphate levels to hematoporphrin derivation–induced photosensitization in R3230AC tumors. Cancer Res 46: 211–217.PubMedGoogle Scholar
  18. 18.
    Kessel D (1987). Photodynamic therapy with derivatives of hematoporphyrin and tetraphenyl– porphine. Lasers Med Sci 2: 95–99.CrossRefGoogle Scholar
  19. 19.
    Litvack F, Grundfest WS, Forrester JS, Fishbein MC, et al. (1985). Effects of hematoporphyrin derivative and photodynamic therapy on atherosclerotic rabbits. Am J Cardiol 56: 667–671.PubMedCrossRefGoogle Scholar
  20. 20.
    Straight RC, Vincent GM, Hammond EH, Dixon JA (1985). Porphyrin retention and photodynamic treatment of diet–induced atherosclerotic lesions in pigs. In Photodynamic Therpay of Tumors and Other Diseases. G Jori, C Perria, eds. Padova, Italy: Liberia Progetto, pp 350–352.Google Scholar
  21. 21.
    Kessel D, Sykes E (1984). Porphyrin accumulation by atheromatous plaques of the aorta. Photochem Photobiol 40: 59–61.PubMedCrossRefGoogle Scholar
  22. 22.
    Spokojny AM, Serur JR, Skillman J, Spears RJ (1986). Uptake of hematoporphyrin derivative by atheromatous plaques: Studies in human in vitro and rabbit in vivo. J Am Coll Cardiol 8: 1387–1392.PubMedCrossRefGoogle Scholar
  23. 23.
    Zieve PD, Solomon HM (1966). Effect of hematoporphyrin and light on human fibrinogen. Am J Physiol 210: 1391–1395.PubMedGoogle Scholar
  24. 24.
    Joris I, Zand T, Nunnars JJ, Krolikowski FJ, Majno G (1983). Studies on the pathogenesis of atherosclerosis. I. Adhesion and emigration of mononucleur cells in the aorta of hypercho– lesterolemic rabbit. Am J Pathol 113: 341–358.PubMedGoogle Scholar
  25. 25.
    Murphy-Chutorian D, Kosek J, Mok W, Quay S, et al. (1985). Selective absorption of ultraviolet laser energy by human atherosclerotic plaque treated with tetracycline. Am J Cardiol 55: 1293–1297.PubMedCrossRefGoogle Scholar
  26. 26.
    Morcos NC, Berns M, Henry WL (1988). Phycocyanin: Laser activation, cytotoxic effects, and uptake in human atherosclerotic plaque. Lasers Surg Med 8: 10–17.PubMedCrossRefGoogle Scholar
  27. 27.
    Abela GS, Normann S, Cohen D, Feldman RL, et al. (1982). Effects of carbon dioxide, Nd: YAG, and argon laser irradiation of coronary atheromatous plaques. Am J Cardiol 50: 1199–1205.PubMedCrossRefGoogle Scholar
  28. 28.
    Spokojny AM, Sinclair IN, Serur JR, Schoen FJ, Paulin R, Spears JR (1985). Photodynamic therapy of atheromatous plaques in the rabbit (abstr). Circulation 72: 111–371.CrossRefGoogle Scholar
  29. 29.
    Johnson MD, Fox JB, Vincent GM, Hammond EM (1988). In vitro removal of photosensitized rabbit atherosclerotic plaque by dye laser irradiation. Proceedings of Sixth International Congress on Applications of Lasers and Electro-Optics. Technical Digest, November, 1987.Google Scholar
  30. 30.
    Pollock ME, Eugene J, Hammer-Wilson M, Berns MW (1987). Photosensitization of experimental atheromas by porphyrins. J Am Coll Cardiol 6: 639–646.Google Scholar
  31. 31.
    Abela GS, Barbieri E, Roxey T, Conti CR (1986). Laser Enhanced Plaque atherolysis with Tetracycline (abstr). Circulation 74 (Suppl II): II–7.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • G. Michael Vincent
  • George S. Abela
  • Enrico Barbieri

There are no affiliations available

Personalised recommendations