Distribution of Lead in Human Bone: III. Synchrotron X-Ray Microscope Measurements

  • K. W. Jones
  • G. Schidlovsky
  • D. E. Burger
  • F. L. Milder
  • H. Hu
Part of the Basic Life Sciences book series (BLSC, volume 55)

Abstract

Measurement of the microdistribution of lead and other elements in bone is of interest for two reasons. First, the correlation of the lead concentrations with histological features in the bone may shed light on the biological mechanisms involved in the absorption and redistribution of lead in bone structures and help identify the compartments in which the lead is stored. Second, a knowledge of the distribution is required in order to provide a firm basis for the interpretation of in vivo x-ray measurements of bone lead concentrations based on the detection of characteristic K or L x-rays.

Keywords

Zinc Toxicity Attenuation Peri Strontium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdulla, M., Svensson, B. S., and Haeger-Aronson, B., 1979, Antagonistic effects of zinc and aluminum on lead inhibition of δ- aminolevulinic acid dehydratase, Arch. Environ. Health., 34:463.Google Scholar
  2. Jones, K. W., Schidlovsky, G., Williams, F. H., Jr., Wedeen, R. P., and Batuman, V., 1987, In-vivo determination of tibial lead by K x- ray fluorescence with a 109Cd source, in: “In Vivo Body Composition Studies. Proceedings of an International Symposium,” K. J. Ellis. S. Yasumura, and U. D. Morgan. eds., Institute of Physical Sciences in Medicine, London.Google Scholar
  3. Jones, K.W., and Gordon, B. M., 1989, Trace element determinations with synchrotron-induced x-ray emission, Anal. Chem., 61:341A.CrossRefGoogle Scholar
  4. Lindh, U., Brune, D., and Nordberg, G., 1978, Microprobe analysis of lead in human femur by proton induced x-ray emission (PIXE), Sci. Tot. Envir., 10:31.CrossRefGoogle Scholar
  5. Lindh, U., 1980, A nuclear microprobe investigation of heavy-metal distribution in individual osteons of human femur. Int. J. App. Rad. and Isotopes., 31:737.CrossRefGoogle Scholar
  6. Lindh, U., 1981, The nuclear microprobe applied to bioenvironmental studies, Nucl. Instrum. and Meth., 181:171.CrossRefGoogle Scholar
  7. Petering, H. G., 1978, Some observations on the interaction of zinc, copper and iron metabolism on lead and calcium toxicity, Environ. Health Perspec., 25:141.CrossRefGoogle Scholar
  8. Rosen, J. F., Markowitz, M. F., Bijur, P. E., Jenks, S. T., Wielopolski. L., Kalef-Ezra, J. A., and Slatkin, D. H., 1989, L- line x-ray fluorescence of cortical bone lead compared with the CaNa2EDTA test in lead-toxic children: public health implications, Proc. Natl. Acad. Sci. USA, 86: 685.PubMedCrossRefGoogle Scholar
  9. Somervaille, L. J., Chettle, D. R., and Scott, M. C., 1985, In-vivo measurement of lead in bone using x-ray fluoresence. Phys Med. Biol., 30: 929.PubMedCrossRefGoogle Scholar
  10. Vaughn. J., 1981, “The Physiology of Bone,” Clarendon Press, Oxford.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • K. W. Jones
    • 1
  • G. Schidlovsky
    • 1
  • D. E. Burger
    • 2
  • F. L. Milder
    • 2
  • H. Hu
    • 3
  1. 1.Brookhaven National LaboratoryUptonUSA
  2. 2.ABIOMED, IncDanversUSA
  3. 3.Channing Laboratory Department of MedicineBrigham and Women’s Hospital Harvard Medical SchoolBostonUSA

Personalised recommendations