Advertisement

Measurements of Trace Elements In Vivo

  • D. R. Chettle
  • R. Armstrong
  • A. C. Todd
  • D. M. Franklin
  • M. C. Scott
  • L. J. Somervaille
Part of the Basic Life Sciences book series (BLSC, volume 55)

Abstract

When measurements of potentially toxic trace elements are to be made in vivo, the usual constraints of keeping any radiation dose as low as possible and the non-standard, extended shape of humans, are compounded by the fact that the target element is present, by definition, only in small quantities. Lower limits of detection, are often, therefore, vital parameters with which to characterise measurement system peformance.

Keywords

Skin Dose Effective Dose Equivalent Boric Oxide Body Composition Study Bone Lead 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlgren, L., and Mattsson, S., 1979. An X-ray fluorescence technique for in vivo determination of lead concentration in a bone matrix, Phys. Med. Biol., 24:136PubMedCrossRefGoogle Scholar
  2. Batuman, V., Wedeen, R.P., Bogden, J.D., Balestra, D.J., Jones, K., and Schidlovsky, G., 1989, Reducing bone lead content by chelation treatment in chronic lead poisoning: An in vivo X-ray fluorescence and bone biopsy study, Env. Res., 48:70CrossRefGoogle Scholar
  3. Bloch, P., and Shapiro, I.M., 1986, An X-ray fluorescence technique to measure in situ the heavy metal burdens of person exposed to these elements in the workplace, J Occup. Med., 28: 609PubMedCrossRefGoogle Scholar
  4. Chang, P.S., Ho, Y.H., Chung, C., Yuan. L.J., and Weng. P.S., 1987, In vivo measurement of organ mercury by prompt gamma activation anlaysis using a mobile nuclear reactor, Nuclear Technology, 76: 241.Google Scholar
  5. Chettle, D.R., and Fremlin, J.H., 1984, Techniques of in vivo neutron activation analysis, Phys. Med. Biol., 29:1011PubMedCrossRefGoogle Scholar
  6. Chettle, D.R., Scott. M.C., Ellis, K.J., and Morgan, U.D., 1987a. In vivo monitoring of trace elements in medicine and research, in: “In vivo Body Composition Studies”, K.J. Ellis, S. Yasumura and W.D. Morgan, eds., IPSM, London.Google Scholar
  7. Chettle, D.R., Franklin, D.M., Guthrie. C.J.G., Scott, M.C., and Somervaille, L.J., 1987b, In vivo and in vivo measurements of lead and cadmium, Biological Trace Element Research, 13: 191.CrossRefGoogle Scholar
  8. Chettle, D.R., Scott. M.C., and Somervaille, L.J., 1989, Improvements in the precision of in vivo bone lead measurements, Phys. Med. Biol., 34: 1295.PubMedCrossRefGoogle Scholar
  9. Christoffersson, J.O., Schütz, A., Ahlgren, L., Haeger-Aronsen, B., and Mattsson, S., 1984, Lead in finger-bone analysed in vivo in active and retired lead workers, Am. J. Industr. Med., 6: 447CrossRefGoogle Scholar
  10. Chung, C., 1988, In vivo partial body activation analysis using filtered neutron beam, Appl. Rad Isot., 39: 93CrossRefGoogle Scholar
  11. Cohn, S.H., 1980, The present state of in vivo neutron activation analysis in clinical diagnosis and therapy. Atom. Ener. Rev., 18:599Google Scholar
  12. Davison, A.G., Fayers, P.M., Newman Taylor, A.J., Venables, K.M., Darbyshire, J., Pickering. C.A.C., Chettle, D.R., Franklin. D.M., Guthrie. C.J.G., Scott. M.C., O’Malley, D., Holden. H., Mason. H.J., Wright, A.L., and Gompertz, D., 1988, Cadmium fume Inhalation and emphysema, Lancet, 11, 663.CrossRefGoogle Scholar
  13. Ellis, K.J., Vartsky, D.. Zanzi. I., Cohn, S.H., and Yasumara. S., 1979. Cadmium: In vivo measurement in smokers and non-smokers, Science, 205: 323.PubMedCrossRefGoogle Scholar
  14. Ellis, K.J., Vartsky, D., and Cohn. S.H., 1983, In vivo monitoring of heavy metals in man: cadmium and mercury, Neuotoxicology, 4: 164.Google Scholar
  15. Ellis K.J., and Kelleher, S.P., 1987 In vivo bone aluminium measurements in patients with renal disease, in: “In vivo Body Composition Studies”, K.J. Ellis. S. Yasumura, and W.D. Morgan, eds., IPSM. London.Google Scholar
  16. Ellis K.J, In vivo measurements of a cadaium smelter population, Proceedings 6th International Cadmium Conference (in press).Google Scholar
  17. El-Sharkawi, A.M., Morgan. U.D., Cobbold, S., Jaib, M.B.M., Evans. C.J., Somervailie, L.J., Chettle, D.R., and Scott. M.C., 1986, Unexpected mobilisation of lead during cisplatin chemotherapy, Lancet ii:249.CrossRefGoogle Scholar
  18. Franklin. D.M., Guthrie, C.J.G., Chettle. D.R., Scott. M.C., Mason. H.J., and Newman Taylor. A.J., In vivo neutron activation analysis of organ cadmium burdens - referent levels in liver and kidney and the impact of smoking. Nuclear Analytical Methods in the Life Sciences (in press).Google Scholar
  19. Guthrie, C.J.G., Franklin, D.M., Scott, M.C., Chettle, D.R., Mason, H.J., Smith, N.J., Wright, A.L., and Blindt, M., 1987, A longitudinal survey of exposure to cadmium fume preliminary findings from in vivo body burden measurements in: “In vivo Body Conposition Studies”. K.J. Ellis, S. Yasumura, and W.D. Morgan, eds., IPSM London.Google Scholar
  20. Hu, H., Milder, F.L., arid Burger, D.E., X-ray fluorescence: issues surrounding the application of a new tool for measuring burden of lead, Env. Res., (in press).Google Scholar
  21. Jones. K.W, Schidlovsky, G., Burger, D.E., and Milder, F.L., this volume. Jones. K.U., Schidlovsky, G., Burger, D.E., and Milder, F.L., this volume.Google Scholar
  22. Jonson, R., Mattsson, S., and Unsgaard, B., 1988, A method for in vivo analysis of platinum after chemotherapy with cisplatin, Phys, Med. Biol., 33:847CrossRefGoogle Scholar
  23. Jonson R., 1988, “Radioanalytical methods for the determination of bone mineral and heavy metals in vivo”, Thesis, University of Göteborg, Sweden.Google Scholar
  24. Landrigan, P.J ., 1989, The toxicity of lead at low dose, editorial, Br. J. Indust. Med., 46:593Google Scholar
  25. Mason, H.J., Davison, A.G., Wright, A.L., Guthrie, C.J.G., Fayers, P.M., Venables, K.M., Smith, N.J., Chettle, D.R., Franklin, D.M., Scott, M.C., Holden, H., Gompertz, D., and Newman Taylor, A.J., 1988, Relations between liver cadmium cumulative exposure, and renal function in cadmium alloy workers, Br. J. Indust. Med., 45:793Google Scholar
  26. Morgan, W.D., Vartsky, D.. Ellis, K.J., and Cohn, S.H., 1981. A Comparison of 252Cf and 238Pu, Be neutron sources for partial body in vivo activation analysis, Phys. Med. Biol., 26:413PubMedCrossRefGoogle Scholar
  27. Morgan, W.D., Ryde, S.J.S., Jones, S.J., Wyatt, R.M., Hainsworth, I.R., Cobbold, S.S., Evans, C.J., and Braithwaite, R.A., In vivo measurements of cadmium and lead in occupationally exposed workers and in an urban population. Nuclear Analytical Methods in the Life Sciences, (in press).Google Scholar
  28. Nilsson, U., Ahlgren, L., Christoffersson, J.O., and Mattsson S., this volume.Google Scholar
  29. Nordberg, G.F., Kjellstro m, T., and Nordberg, M., 1985, Kinetics and metabolism, in: Cadmium and Health L. Friberg, C.G. Elinder, T. Kjellström, and C.F, Nordberg, eds., CRC Press, Boca Raton, Florida, vol. I.Google Scholar
  30. Rosen, J.F., Markowitz, M.E., Bijur, P.E., Jenks, S.T., Wielopolski, L., Kalef-Ezra, J.A., and Slatkin, D.N., 1989, L-line X-ray fluorescence of cortical bone lead compared with the CaNa EDTA test in lead toxic children: Public Health implications, Proc. Nat. Acad. Sci. USA, 86: 685.Google Scholar
  31. Ryde, S.J.S., Morgan, W.D., Sivyer, A., Evans. C.J., and Dutton, J., 1987, A clinical instrument for multi-element in vivo analysis by prompt delayed and cyclic neutron activation using 252Cf. Phys. Med. Biol., 32: 1257.PubMedCrossRefGoogle Scholar
  32. Schütz, A., Skerving, S., Christoffersson, J.O., Ahlgren, L., and Mattsson, S., 1987a, Lead in vertebral biopsies form active and retired workers. Arch. Environ. Health., 42:340CrossRefGoogle Scholar
  33. Schütz, A., Skerving, S., Christoffersson, J.O., Ahlgren, L., and Mattsson, S., 1987a, Lead in vertebral biopsies form active and retired workers. Arch. Environ. Health., 42:340.CrossRefGoogle Scholar
  34. Scott, J., and Lillicrap, S., 1988. 133Xe for the X-ray fluorescence assessment of gold in vivo, Phys. Med. Biol., 33:859PubMedCrossRefGoogle Scholar
  35. Scott, M.C., and Chettle, D.R., 1986, In vivo elemental analysis in occupational medicine, Scand. J. Work. Environ. Health., 12:81PubMedGoogle Scholar
  36. Somervaille, L.J., Chettle, D.R., and Scott, N.C., 1985, In vivo measurements of lead in bone using X-ray fluorescence, Phys. Med. Biol., 30:929PubMedCrossRefGoogle Scholar
  37. Somervaille, L.J., Chettle, D.R., Scott. M.C., Tennant, D.R., McKiernan, M.J., Skilbeck, A., and Trethowan, W.N., 1988. In vivo tibia lead measurements as an index of cumulative exposure in occupationally exposed subjects, Br. J. Indust. Med., 45: 174.Google Scholar
  38. Somervalle, L.J., Nilsson, U., Chettle, D.R., Tell, I., Scott, M.C., Schütz, A., Mattsson, S., and Skerfving, S., 1989, In vivo measurements of bone lead - a comparison of two X-ray fluorescence techniques used at three different bone sites. Phys. Med, Biol., 34:1833CrossRefGoogle Scholar
  39. Wielopolski, L., Rosen, J.F., Slatkin, D.N., Vartsky, D., Hills, K.J., and Cohn, S.H., 1983, Feasibility of noninvasive analysis of lead in the human tibia by soft X-ray fluorescence, Med. Phys., 10:248PubMedCrossRefGoogle Scholar
  40. Wielopolski, L., Rosen, J.F., Slatkin, D.N., Zhang, R., Kalef-Ezra, J.A., Rothnan J.C., Maryanski. M., and Jenks, S.T., 1989, In vivo measurement of cortical bone lead using polarized X-rays, Med. Phys., 16: 521.PubMedCrossRefGoogle Scholar
  41. Wittmers, L.E., Aufderheide, A.C., Wallgren, J., Rapp, G., and Alich, A., 1988, Lead in bone IV. Distribution of lead in the human skeleton, Arch. Environ. Health., 43:381.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • D. R. Chettle
    • 1
  • R. Armstrong
    • 1
  • A. C. Todd
    • 1
  • D. M. Franklin
    • 1
  • M. C. Scott
    • 1
  • L. J. Somervaille
    • 1
  1. 1.Medical Physics Group, School of Physics and Space ResearchUniversity of BirminghamBirminghamEngland

Personalised recommendations