Advertisement

Green’s Functions at Finite Temperatures

  • Gerald D. Mahan
Chapter
Part of the Physics of Solids and Liquids book series (PSLI)

Abstract

Experiments are done at finite temperatures. Since one goal of many-body theory is to explain experiments (another is to predict them), we should do our theories at finite temperatures. This is often unnecessary if the temperature is small compared to other energies in the problem. But often temperature is important, and here we shall learn how to incorporate it into Green’s functions. The finite temperature formalism was originated by Matsubara. It will actually be easier to use than the zero temperature theory of Chapter 2, so that we shall use the Matsubara method throughout the remainder of the book. The zero temperature result is always easily obtained from the finite temperature result by just setting T= 0.

Keywords

Spectral Function Finite Temperature Kubo Formula Wigner Distribution Function Retarded Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrikosov, A. A., L. P. Gorkov, and I. E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics ( Prentice-Hall, Englewood Cliffs, N.J., 1963 ).MATHGoogle Scholar
  2. Barnard, R. D., Thermoelectricity in Metals and Alloys ( Taylor & Francis, London, 1972 ).Google Scholar
  3. Brout, R., and P. Carruthers, Lectures on the Many-Electron Problem ( Wiley-Inter- science, New York, 1963 ).Google Scholar
  4. Chou, K. C., Z. B. Su, B. L. Hao, and L. Yu, Phys. Rep. 118, 1 (1985).MathSciNetADSCrossRefGoogle Scholar
  5. de Groot, S. R., Thermodynamics of Irreversible Processes ( North-Holland, Amsterdam, 1952 ).Google Scholar
  6. de Groot, S. R., and P. Mazur, Non-Equilibrium Thermodynamics ( North-Holland, Amsterdam, 1962 ).Google Scholar
  7. Dunn, D., Can. J. Phys. 53, 321 (1975).ADSCrossRefGoogle Scholar
  8. Girvin, S. M., J. Solid State Chem. 25, 65 (1978).ADSCrossRefGoogle Scholar
  9. Green, M. S., J. Chem. Phys. 20, 1281 (1952); 22, 398 (1954).ADSCrossRefGoogle Scholar
  10. Kohn, W., and J. M. Luttinger, Phys. Rev. 118, 41 (1960).MathSciNetADSMATHCrossRefGoogle Scholar
  11. Kubo, R., Lectures in Theoretical Physics, Vol. I (Boulder) (Wiley-Interscience, New York, 1959), pp. 120–203; J. Phys. Soc. Japan 12, 570 (1957).Google Scholar
  12. Langreth, D., in NATO Advanced Study Institute on Linear and Nonlinear Transport, ed. J. T. Devreese and V. E. van Doren ( Plenum, New York, 1976 ), p. 3.Google Scholar
  13. Lehmann, H., Nuovo Cimento 11, 342 (1954).MathSciNetMATHCrossRefGoogle Scholar
  14. Luttinger, J. M., Phys. Rev. 135, A1505 (1964).MathSciNetADSCrossRefGoogle Scholar
  15. Luttinger, J. M., and J. C. Ward, Phys. Rev. 118, 1417 (1960).MathSciNetADSMATHCrossRefGoogle Scholar
  16. Mahan, G. D., Phys. Rev. B 11, 4814 (1975).ADSCrossRefGoogle Scholar
  17. Matsubara, T., Prog. Theor. Phys. (Kyoto) 14, 351 (1955).Google Scholar
  18. Taylor, P. L., A Quantum Approach to the Solid State ( Prentice-Hall, Englewood Cliffs, N.J., 1970 ).Google Scholar
  19. Tomonaga, S., Prog. Theor. Phys. (Kyoto) 2, 6 (1947).Google Scholar
  20. West, R. N., Positron Studies of Condensed Matter ( Taylor & Francis, London, 1974 ).Google Scholar
  21. Wigner, E., Phys. Rev. 40, 749 (1932).ADSMATHCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Gerald D. Mahan
    • 1
  1. 1.University of Tennessee and Oak Ridge National LaboratoryUSA

Personalised recommendations