X-Ray Microradiography and Shadow Projection X-Ray Microscopy

  • P. C. Cheng
  • S. P. Newberry
  • H. G. Kim
  • I. S. Hwang

Abstract

The fundamental advantages of soft X rays over electrons in the examination of fine structures have been described in detail by various authors.(1−5) The oretically, x-ray microscopy provides higher resolution than light microscopy, higher penetration ability than electron microscopy, and, most importantly, x-ray microscopy promises the potential for imaging hydrated specimens. Therefore, x-ray microscopy could occupy a niche in biological research in three-dimensional imaging of samples in the resolution range of the electron microscopy but of substantially greater thickness. This would greatly simplify the observation and interpretation of three-dimensional ultrastructures of living specimens beyond the resolution limit of the light microscope.

Keywords

Rubber Tungsten Molybdenum Ketone Isopropanol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Spiller, R. Feder, J. Topalian, D. Eastman, W. Gudat, and D. Sayre, “X-ray microscopy of biological objects with carbon K ∝ and with synchrotron radiation,” Science 191, 1172–1174 (1976).PubMedCrossRefGoogle Scholar
  2. 2.
    D. Sayre, J. Kirz, R. Feder, D. M. Kim, and E. Spiller, “Potential operating region for ultrasoft x-ray microscopy of biological objects,” Science 196, 1339 (1977).PubMedCrossRefGoogle Scholar
  3. 3.
    R. Feder, E. Spiller, J. Topalian, A. N. Broers, W. Gudat, B. Panessa, J. A. Zadunaisky, and J. Sedat, “High-resolution soft x-ray microscopy,” Science 197, 259 (1977).PubMedCrossRefGoogle Scholar
  4. 4.
    E. Spiller and R. Feder, “The optics of long-wavelength X rays,” Sci. Am. 239-5, 70–78 (1978).CrossRefGoogle Scholar
  5. 5.
    J. W. McGowan, B. Borwein, J. A. Mederiros, T. Beveridge, J. D. Brown, E. Spiller, R. Feder, J. Topalian, and W. Gudat, “High-resolution microchemical analysis using soft x-ray lithographic techniques,” J. Cell Biol. 80, 732–735 (1979).PubMedCrossRefGoogle Scholar
  6. 6.
    A. Engstrom, “Quantitative micro- and histochemical elementary analysis by Roentgen absorption spectrograph” Acad. Radiol. Scand., Suppl. 63, 1–106 (1946).Google Scholar
  7. 7.
    A. Engstrom, “Quantitative microchemical and histochemical analysis of elements by X rays,” Nature 158, 664–665 (1946).PubMedCrossRefGoogle Scholar
  8. 8.
    F. Cinotti, M. C. Voisin, C. Jacobsen, J. M. Kenney, J. Kirz, I. McNulty, H. Rarback, R. Rosser, and D. Shu, “Studies of calcium distribution in bone by scanning x-ray microscopy,” in: X-Ray Microscopy: Instrumentation and Biological Applications (P. C. Cheng and G. J. Jan, eds.), pp. 311–327 Springer, Berlin (1987).Google Scholar
  9. 9.
    R. L. Saunders, “Biological applications of projection x-ray microscopy,” in: 5th International Congress on X-Ray Optics and Microanalysis, Gubingen University, pp. 550 - 560, Springer, Berlin (1969).Google Scholar
  10. 10.
    B. Niemann, “Current status of the Gottingen scanning x-ray microscope: Experiments at the BESSY storage ring,” in: X-Ray Microscopy: Instrumentation and Biological Applications (P. C. Cheng and G. J. Jan, eds.), pp. 39–52, Springer, Berlin (1987).Google Scholar
  11. 11.
    W. Meyer-Ilse, G. Nyakatura, P. Guttmann, B. Niemann, D. Rudolph, G. Schmahl, and P. C. Cheng, “Status of x-ray microscopy experiments at the BESSY Laboratory,” in: X-Ray Microscopy: Instrumentation and Biological Applications (P. C. Cheng and G. J. Jan, eds.), pp. 34–38, Springer, Berlin (1987).Google Scholar
  12. 12.
    G. Schmahl and D. Rudolph, “Proposal for a phase contrast x-ray microscope,” in: X-Ray Microscopy: Instrumentation and Biological Applications (P. C. Cheng and G. J. Jan, eds.), pp. 231–238, Springer, Berlin (1987).Google Scholar
  13. 13.
    P. C. Cheng, K. H. Tan, J. W. McGowan, R. Feder, H. B. Peng, and D. M. Shinozaki, “Soft x-ray contact microscopy and microchemical analysis of biological specimens,” in: X-Ray Microscopy, Springer Series in Optical Sciences (G. Schmahl and D. Rudolph, eds.), Vol. 43, pp. 285–293, Springer, Berlin (1984).Google Scholar
  14. 14.
    P. C. Cheng, J. W. McGowan, K. H. Tan, R. Feder, and D. M. Shinozaki, “Ultrasoft x-ray contact microscopy: A new tool for plant and animal cytology,” in: Examining the Submicron World (R. Feder, J. W. McGowan, and D. M. Shinozaki, eds.), pp. 299–350, Plenum, New York (1986).Google Scholar
  15. 15.
    P. C. Cheng, D. M. Shinozaki, and K. H. Tan, “Recent advances in contact imaging of biological materials,” in: X-Ray Microscopy: Instrumentation and Biological Applications (P. C. Cheng and G. J. Jan, eds.), pp. 65–104, Springer, Berlin (1987).Google Scholar
  16. 16.
    H. Winick and S. Doniach, Synchrotron Radiation Research, Plenum, New York, (1982).Google Scholar
  17. 17.
    E. Koch, D. E. Eastman, and Y. Farge, “Synchrotron radiation: A powerful tool in science,” in: Handbook on Synchrotron Radiation (D. E. Eastman and Y. Farge, eds.), Vol. 1, pp. 1–63, North-Holland, Amsterdam (1983).Google Scholar
  18. 18.
    B. Yaakobi, P. Bourke, Y. Conturie, J. Delettrez, J. M. Forsyth, R. D. Frankel, L. M. Goldman, R. L. McCrory, W. Seka, and J. M. Soures, “High x-ray conversion efficiency with target irradiation by a frequency-tripled Nd: glass laser,” Opt. Comm. 38, 196–200, (1981).CrossRefGoogle Scholar
  19. 19.
    N. Takahashi, S. Takahashi, M. Kagayama, and K. Yada, “Three-dimensional visualization of Golgi-stained neurons by a projection x-ray microscope converted from a scanning electron microscope,” Tohoku J. Exp. Med. 1141, 249–256 (1983).CrossRefGoogle Scholar
  20. 20.
    H. H. Pattee, “High-resolution radiosensitive materials for microradiography at long wavelengths,” in: X-Ray Microscopy and Microanalysis (A. Engstrom, V. Cosslett, andH. H. Pattee, eds.), pp. 61–65, Elsevier, Amsterdam (1960).Google Scholar
  21. 21.
    D. J. Nagel, “Comparison of x-ray sources for exposure of photoresists,” Ann. N.Y. Acad. Sci. 342, 235–251 (1980).CrossRefGoogle Scholar
  22. 22.
    D. C. Flanders, “Replication of 170 Alines and spaces in PMMA using x-ray lithography,” Appl. Phys. Lett. 36, 93–96 (1980).CrossRefGoogle Scholar
  23. 23.
    S. P. Newberry, “Image capture in the projection shadow x-ray microscope,” in: X-Ray Microscopy II, Springer Series in Optical Sciences, Vol. 56, pp. 306–309, Springer, Berlin (1988).Google Scholar
  24. 24.
    R. L. Davis, N. A. Flores, and K. T. Evans, “Development and assessment of an image intensifier for real-time x-ray microscopy,” Br. J. Radiol. 59, 273–276 (1986).CrossRefGoogle Scholar
  25. 25.
    F. Polack and S. Lowenthal, “Photoelectron x-ray microscopy: recent developments,” in: X-Ray Microscopy, Springer Series in Optical Sciences (G. Schmahl and D. Rudolph, eds.), Vol. 43, pp. 251–260, Springer, Berlin (1984).Google Scholar
  26. 26.
    P. Goby, “Une application nouvelle des rayons X, La microradiographies” Compt. Rend. Acad. Sci. Paris 156, 686–688 (1913).Google Scholar
  27. 27.
    P. Goby, “A new application of Roentgen rays, microradiography,” J. Roy. Mic. Soc., August, 373–375 (1913).Google Scholar
  28. 28.
    P. Goby, “La microradiographie stereoscopique en relief et en pseudo-relief. La stereomicroradiographie,” Compt. Rend. Acad. Sci. Paris 180, 735–737 (1925).Google Scholar
  29. 29.
    A. Dauvillier, “Sur un tube a rayons X de longueur d’onde effective enable a 8 units Ångstrom,” Compt. Rend. Acad. Sci. 185, 1460–1462 (1927).Google Scholar
  30. 30.
    A. Dauvillier, “Realisation de la microradiographie integrale,”Compt. Rend. Acad. Sci. 190, 1278–1289 (1930).Google Scholar
  31. 31.
    P. Lamarque, “Technique de l’historadiographie,” Comptes Rendus de I’Association des Ana- tomistes 31, 197–206 (1936).Google Scholar
  32. 32.
    V. E. Cosslett and W. C. Nixon, X-Ray Microscopy, University Press, Cambridge (1960).Google Scholar
  33. 33.
    P. C. Cheng, D. B. Walden, and R. I. Greyson, “Improved plant microtechniques for TEM, SEM, and LM specimen preparation,” Nat. Sci. Council Monthly. Rep. of China 7, 1000–1007 (1980).Google Scholar
  34. 34.
    D. Sayre, “Imaging properties of the soft x-ray photon,” in: X-Ray Microscopy: Instrumentation and Biological Applications (P. C. Cheng and G. J. Jan, eds.), pp. 13–31, Springer, Berlin (1987).Google Scholar
  35. 35.
    O. C. Wells and P. C. Cheng, “Examination of uncoated photoresist by the low-loss electron method in the scanning electron microscope,” J. Appl. Phys. 62, 4872–4877 (1987).CrossRefGoogle Scholar
  36. 36.
    O. C. Wells and P. C. Cheng, “Examination of soft x-ray contact images by the low-loss electron method in the scanning electron microscope,” in: X-Ray Microscopy II, Springer Series in Optical Sciences, Vol. 56, pp. 316–318, Springer, Berlin (1988).Google Scholar
  37. 37.
    O. C. Wells, “Low-loss image for surface scanning electron microscope,” Appl. Phys. Lett. 19, 232–235 (1971).CrossRefGoogle Scholar
  38. 38.
    J. Pawlak, P. C. Cheng, and D. M. Shinozaki, “A simple procedure for the fabrication of Si3N4 windows,” in: X-Ray Microscopy: Instrumentation and Biological Applications (P. C. Cheng and G. J. Jan, eds.), pp. 336–345, Springer, Berlin (1987).Google Scholar
  39. 39.
    D. M. Shinozaki and B. W. Robertson, “The examination of topographic images in resist surfaces,” in: X-Ray Microscopy: Instrumentation and Biological Applications (P. C. Cheng and G. J. Jan, eds.), pp. 105–125, Springer, Berlin (1987).Google Scholar
  40. 40.
    D. M. Shinozaki, P. C. Cheng, and R. Feder, “Soft x-ray induced surface roughness in PMMA,” in: Proceedings of the XI International Congress on Electron Microscopy (S. Maruse, T. Imura and T. Suzuki, eds), pp. 1763–1764, Japanese Society of Electron Microscopy, Kyoto (1986).Google Scholar
  41. 41.
    B. Yaakobi, H. Kim, J. M. Soures, H. W. Deckman, and J. Dunsmuir, “Submicron x-ray lithography using laser-produced plasma as a source,” Appl. Phys. Lett. 43, 686–688 (1983).CrossRefGoogle Scholar
  42. 42.
    P. C. Cheng, H. G. Kim, and M. D. Wittman, “Microradiography with laser-produced plasma sources: surface roughness on PMMA resist,” X Rays from Laser Plasmas, Proc. SPIE 831, 217–223 (1988).Google Scholar
  43. 43.
    B. Hudson and M. J. Markin, “The optimum tilt angle for electron stereo-microscopy,” J. Phys. E: Scientific Instruments 3, 311 (1970).CrossRefGoogle Scholar
  44. 44.
    S. P. Newberry, “The shadow projection type of x-ray microscope,” in: X-Ray Microscopy: Instrumentation and biological Applications (P. C. Cheng and G. J. Jan, eds.), pp. 126–141, Springer, Berlin (1987).Google Scholar
  45. 45.
    S. P. Newberry, “History of x-ray microscopy,” in: X-Ray Microscopy: Instrumentation and Biological Applications (P. C. Cheng and G. J. Jan, eds.), pp. 346–360, Springer, Berlin (1987).Google Scholar
  46. 46.
    B. M. Rovinsky, V. J. Lutsau, and A. T. Avdeyenak, in: X-Ray Microscopy and X-Ray Microradiography ( V. E. Cosslett, A. Engstrom, and H. H. Pattee, eds.), pp. 269–277, Academic, New York (1957).Google Scholar
  47. 47.
    S. P. Newberry and S. E. Summers, “The General Electric shadow x-ray microscope,” Proc. Int. Conf. Electron Microscopy, 305–307 (1954).Google Scholar
  48. 48.
    J. J. Wolosewick, “The application of polyethylene glycol (PEG) to electron microscopy,” J. Cell Biol. 86, 675–681 (1980).PubMedCrossRefGoogle Scholar
  49. 49.
    V. Kolarik and V. Svoboda, “An x-ray projection microscope with field emission gun,” J. of Mic. 156 (2), 247–251 (1989).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • P. C. Cheng
    • 1
  • S. P. Newberry
    • 2
  • H. G. Kim
    • 3
  • I. S. Hwang
    • 4
  1. 1.Advanced Microscopy Laboratory, Department of Anatomical Sciences, School of Medicine and Biomedical Sciences/School of Engineering and Applied SciencesState University of New York at BuffaloBuffaloUSA
  2. 2.CBI LabsSchenectadyUSA
  3. 3.Laboratory for Laser EnergeticsUniversity of RochesterRochesterUSA
  4. 4.Department of Electrical and Computer EngineeringState University of New York at BuffaloBuffaloUSA

Personalised recommendations