Derivatives

  • George Ch. Pflug
Part of the The Kluwer International Series in Engineering and Computer Science book series (SECS, volume 373)

Abstract

In this chapter we approach the main problem of finding the minimizer of
$$F(x) = \int {H(x,\omega )d{{\mu }_{x}}(\omega )}$$
by discussing various notions of differentiability of parameter integrals.

Keywords

Covariance Convolution Stein lICl 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    Aubin J.P. and Frankowska H. (1990). Set valued analysis. Birkhäuser Verlag, Basel.Google Scholar
  2. [2]
    Bickel P.J. and Freedman, D.A. (1981). Some asymptotic theory for the bootstrap. Ann. Statist. 9 (6), 1196–1217.CrossRefGoogle Scholar
  3. [3]
    Billingsley P. (1968). Convergence of Probability Measures. J. Wiley & Sons, New York.Google Scholar
  4. [4]
    Devroye L. (1986). Non-Uniform Random Variate Generation. Springer Verlag, New York, Berlin, Heidelberg.Google Scholar
  5. [5]
    Dunford N. and Schwartz, J.T. (1957). Linear operators, Part I. Inter-science publishers, New York.Google Scholar
  6. [6]
    Donoghue W.F. (1969). Distributions and Fourier Transforms. Pure and Applied Mathematics 32, Academic Press, New York.Google Scholar
  7. [7]
    Evtushenko Y. (1990). Automatic differentiation vieved from optimal control theory. In: Automatic differentiation of algorithms. (A. Griewank, G. Corliss eds.), SIAM, Philadelphia.Google Scholar
  8. [8]
    Ermoliev Yu. (1976). Methods of stochastic programming. Monographs in Optimization and Operations Research, Nauka, Moskwa.Google Scholar
  9. [9]
    Ermoliev Yu., Gaivoronski A. (1991). On Optimization of Discontinuous Systems. IIASA Working paper WP-91–49, Laxenburg, Austria.Google Scholar
  10. [10]
    Ermoliev Yu., Norkin V. and Wets R. (1995). The minimization of semi-continuous functions: mollifier subgradients. Siam J. on Control and Optimization, 33 (1), 149–167.CrossRefGoogle Scholar
  11. [11]
    Glynn P.W. (1987). Construction of process-differentiable representations for parametric families of distributions. University of Wisconsin-Madison, Mathematics Research Center.Google Scholar
  12. [12]
    Gong W.B. and Bremaud P. (1993). Derivatives of likelihood ratios and smoothed perturbation analysis for the routing problem. ACM Trans, on Modeling and Comp. Simul. 3 (2), 134–161.CrossRefGoogle Scholar
  13. [13]
    Gong W.B. and Ho Y.C. (1987). Smoothed (Conditional) Perturbation Analysis of Discrete Event Systems. IEEE Transactions on Automatic Control 32, 858–866.Google Scholar
  14. [14]
    Ho Y.C. and Cao X. (1983). Perturbation Analysis and Optimization of Queueing Networks. J. Optim. Theory Applic. 40 (4), 559–582.CrossRefGoogle Scholar
  15. [15]
    Ho Y.C. and Cao X. (1991). Perturbation Analysis of Discrete Event Systems. Kluwer, Boston.CrossRefGoogle Scholar
  16. [16]
    Lang, S. (1973). Calculus of several variables. Addison Wesley, Reading, Massachusetts.Google Scholar
  17. [17]
    Major P. (1978). On the invariance principle for sums of independent, identically distributed random variables. J. Multivariate Analysis 8, 487–501.CrossRefGoogle Scholar
  18. [18]
    Pflug G. Ch. (1988). Derivatives of probability measures — concepts and applications to the optimization of stochastic systems. Lecture Notes in Control, Vol. 103 (P. Varaiya and A. Kurzhanski eds.), Springer Verlag, 252–274.Google Scholar
  19. [19]
    Pflug, G. Ch. (1989). Sampling derivatives of probability measures. Computing 42, 315–328.Google Scholar
  20. [20]
    Raik E. (1975). The differentiability in the parameter of the probability function and optimization via the stochastic pseudogradient method. Izvestiya Akad. Nauk Est. SSR, Phis. Math. 24 (1), 3–6 (in Russian).Google Scholar
  21. [21]
    Rosenblatt M. (1956). Remarks on some non-parametric estimates of a density function. Ann. Math. Statist. 27, 3, 832–837.CrossRefGoogle Scholar
  22. [22]
    Rubinstein R.Y. (1981). Simulation and the Monte Carlo Method. John Wiley & Sons, New York.CrossRefGoogle Scholar
  23. [23]
    Rubinstein R.Y. and Shapiro A. (1992). Discrete Event Systems: Sensitivity Analysis and Stochastic Optimization by the Score Function Method. John Wiley & Sons, New York.Google Scholar
  24. [24]
    Rubinstein R.Y. (1992). Sensitivity Analysis of Discrete Event Systems by the “Push Out” Method. Ann. Oper. Res. 39, 229–250.CrossRefGoogle Scholar
  25. [25]
    Rudin W. (1962). Fourier Analysis on Groups. Interscience Publishers, (J. Wiley & Sons) New York.Google Scholar
  26. [26]
    Sahin I. (1990). Regenerative Inventory Systems. Bilkent University Lecture Series, Springer Verlag, New York.Google Scholar
  27. [27]
    Suri R. (1987). Infinitesimal perturbation analysis for general discrete-event systems. Journal of the ACM 34 (3), 686–717.CrossRefGoogle Scholar
  28. [28]
    Uryasev S. (1989). A differentiation formula for integrals over sets given by inclusion. Numer. Funct. Anal, and Optimiz. 10, 827–841.CrossRefGoogle Scholar
  29. [29]
    Uryasev S. (1995). Derivatives of probability functions and integrals over sets given by inequalities. J. Computational and Applied Mathematics 56, 197–223.CrossRefGoogle Scholar
  30. [30]
    Vallander S.S. (1973). Calculation of the Wasserstein distance between probability distributions on the line. Theor. Prob. Appi 18, 784–786.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • George Ch. Pflug

There are no affiliations available

Personalised recommendations