Skip to main content

Part of the book series: The Kluwer International Series in Engineering and Computer Science ((SECS,volume 373))

Abstract

Optimization is the art of finding the best among several alternatives in decision making.

Let S be the set of possible decisions. This set is called the feasible set. The decision variable is denoted by x. If x ε S, then x is called feasible, otherwise infeasible. The net costs caused by decision x are measured by a real valued objective function F(x). The goal is to find the best decision, i.e. the decision with minimal costs. We will always assume that there is one single objective function. The case of several competing objective functions, the multi-criteria decision making problem will not be touched here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Aaarts E., Korst J. (1989). Simulated annealing and Boltzmann machines: A stochastic approach to combinatorial optimization and neural computing. J. Wiley and Sons, New York.

    Google Scholar 

  2. Andradottir S. (1994). A global search method for discrete stochastic optimization. To appear in: Siam J. of Optimization.

    Google Scholar 

  3. Aarts E., Laarhoven P. (1987). Simulated Annealing: Theory and Applications. Kluwer Academic Publishers.

    Google Scholar 

  4. Bazaraa M.S., Shetty C.M. (1979). Nonlinear Programming-Theory and Algorithms. J. Wiley and Sons, New York.

    Google Scholar 

  5. Clarke F.H. (1983). Optimization and Nonsmooth Analysis. J. Wiley and Sons, New York.

    Google Scholar 

  6. Dantzig G. (1963). Linear Programming and extensions. Princeton University Press.

    Google Scholar 

  7. David H.A. (1970). Order statistics. J. Wiley and Sons, New York.

    Google Scholar 

  8. Ermoliev Yu., Norkin V., Ruszczynski A. (1994). Optimal allocation of indivisibles under uncertainty. IIASA working paper WP-94–21, Laxenburg, Austria.

    Google Scholar 

  9. Fabian V. (1960). Stochastic approximation methods. Czech. Math. Journal 10, 123–159.

    Google Scholar 

  10. Fabian V. (1967). Stochastic approximation of minima with improved asymptotic speed. Ann. Math. Statist. 38, 191–200.

    Article  Google Scholar 

  11. Fletcher R. (1981). Practical Methods of Optimization. J. Wiley and Sons, Chichester.

    Google Scholar 

  12. Frauendorfer K. (1992). Stochastic Two-Stage Programming. Springer Lecture Notes in Economics and Mathematical Systems 392, Springer Verlag.

    Google Scholar 

  13. Gill P.E., Murray W., Wright M.H. (1981). Practical optimization. Academic Press, London.

    Google Scholar 

  14. Glasserman P. (1991). Gradient Estimation via Perturbation Analysis. Kluwer Academic Publishers, Norwell, USA.

    Google Scholar 

  15. Gnedenko B. (1943). Sur la distribution limite du terme maximum d’une série aléatoire. Ann. Math. 44, 423–453.

    Article  Google Scholar 

  16. Greenstadt J. (1970). Variations on variable metric methods. Math. Computation 24 (1), 1–22.

    Google Scholar 

  17. Gutjahr W., Pflug G. Ch. (1995). Simulated Annealing for noisy cost functions. J. Global Optimization 8, 1–13.

    Google Scholar 

  18. Hening M.I., Levin M. (1992). Joint planning and product delivery comittments with random yield. Operations Research 40 (2), 404–408.

    Article  Google Scholar 

  19. Hestenes M. R. (1980). Conjugate Direction Methods in Optimization. Applications of Mathematics 12, Springer Verlag, New York.

    Google Scholar 

  20. Hiriart-Urruty J.B. (1977). Algorithms of penalization type and of dual type for the solution of stochastic optimization problems with stochastic constraints. Recent developments in statistics (J.R. Barra et al ed.). North Holland Publishing Company, 183–219.

    Google Scholar 

  21. Higle J., Sen S. (1996). Stochastic Decomposition. Kluwer Academic Publishers, Norwell, USA.

    Google Scholar 

  22. Kesten H. (1958). Accelerated Stochastic Approximation. Ann. Math. Statist. 29, 41–59.

    Article  Google Scholar 

  23. Kiefer J., Wolfowitz J. (1952). Stochastic estimation of the maximum of a regression function. Ann. Math. Statist. 23, 462–466.

    Article  Google Scholar 

  24. Kirkpatrick S., Gelatt C.D., Vecchi M.P. (1983). Optimization by simulated annealing. Science 220, 671–680.

    Article  Google Scholar 

  25. Kiwiel K. (1990). Proximy control in bundle methods for convex nondifferentiable optimization. Math. Programming 46, 105–122.

    Article  Google Scholar 

  26. Kushner H. J., Sanvincente E. (1975). Stochastic approxiamation for constrained system with observation noise on the system and constraints. Automatica 11, 375–380.

    Article  Google Scholar 

  27. Lemarechal C. (1989). Nondifferentiable optimization. In: Handbooks of Operations Research and Management Science, Vol. 1, Optimization (Nemhauser G.L., Rinnoy Kan A.H.G., Todd M.J., eds.). North Holland, Amsterdam.

    Google Scholar 

  28. Marti K. (1982). On Accelerations of the Convergence in Random Search Methods. Operations Research Verfahren.

    Google Scholar 

  29. Marquardt D.W. (1963). An algorithm for least squares estimation of nonlinear parameters. SIAM Journal of Ind. and Appl Math. 11, 431–441.

    Article  Google Scholar 

  30. Metropolis N., Rosenbluth A., Rosenbluth M., Teller A., Teller E. (1953). Equation of state calculations by fast computing machines. J. Chemical Physics 21, 1087–1092.

    Article  Google Scholar 

  31. Mihram G.A. (1972). Simulation: Statistical foundations and methodology. Academic Press.

    Google Scholar 

  32. Nelder J.A., Mead R. (1964). A simplex method for function minimization. Computer J. 7, 308–313.

    Google Scholar 

  33. Norkin V., Pflug G. and Ruszczynski A. (1996). Branch and Bound methods for stochastic global optminization. IIAS A working paper, II AS A, Laxenburg, Austria.

    Google Scholar 

  34. Peressini A.L., Sullivan F.E., Uhl J.J. (1988). The Mathematics of nonlinear programming. Undergraduate Texts in Mathematics, Springer Verlag.

    Google Scholar 

  35. Plambeck E.L., Fu B.R., Robinson S.M., Suri R. (1994). Sample Path Optimization of Convex Stochastic Performance Functions. Mathematical Programming, Series B.

    Google Scholar 

  36. Pflug G. (1981). On the convergence of a penalty-type stochastic approximation procedure. J. Information and Optimization Sciences 2, 249–258.

    Google Scholar 

  37. Pflug G. (1990). Non-asymptotic Confidence Bounds for Stochastic Approximation Algorithms with Constant Step Size. Monatshefte für Math-ematik, 110, 297–314.

    Article  Google Scholar 

  38. Polak E. (1971). Computational methods in optimization. Academic Press, New York.

    Google Scholar 

  39. Rockafellar T. (1973). A dual approach to solving nonlinear programming problems by unconstrained optimization. Math. Programming 5, 354–373.

    Article  Google Scholar 

  40. Robbins H., Monro S. (1951). A stochastic approximation method. Ann. Math. Statist 22, 400–407.

    Article  Google Scholar 

  41. Ruppert D. (1985). A Newton-Raphson version of the Multivariate Robbins-Monro Procedure. Ann. Statist 13 (1), 236–245.

    Article  Google Scholar 

  42. Rubinstein, R. (1981). Simulation and the Monte Carlo Method. J. Wiley and Sons, New York.

    Book  Google Scholar 

  43. Rubinstein R. Y. (1986). Monte Carlo Optimization, Simulation and Sensitivity of Queuing Networks. J. Wiley and Sons, New York.

    Google Scholar 

  44. Rubinstein R.Y., Shapiro A. (1993). Discrete Event Systems: Sensitivity Analysis and Stochastic Optimization by the Score Function Method. J. Wiley and Sons, New York.

    Google Scholar 

  45. Schramm H., Zowe J. (1992). A restricted step proximal bundle method for nonconvex nondifferentiable optimization. In: Nonsmooth optimization; methods and applications. (Kiwiel K.C. editor). Gordon and Breach, 175–188.

    Google Scholar 

  46. Shapiro A. (1994). Quantitative stability in stochastic programming. Math. Programming 67, 99–108.

    Article  Google Scholar 

  47. Solis F.J., Wets R.J.B. (1981). Minimization by random search techniques. Mathematics of Operations Research 6 (1), 19–30.

    Article  Google Scholar 

  48. Spendley W., Hext G.R., Himsworth F.R. (1962). Sequential Application of Simplex Design in Optimization and Evolutionary Operation. Technometrics 4 (1), 441–461.

    Article  Google Scholar 

  49. Suri R., Dille J.W. (1985). A technique for online sensitivity analysis of flexible manufacturung systems. Annals of Operations Research 3, 381–391.

    Google Scholar 

  50. Yan D., Mukai H. (1992). Stochastic discrete optimization. SIAM J. Control and Optimization 30, 594–612.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Pflug, G.C. (1996). Optimization. In: Optimization of Stochastic Models. The Kluwer International Series in Engineering and Computer Science, vol 373. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1449-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1449-3_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8631-8

  • Online ISBN: 978-1-4613-1449-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics