Retroelements: Propagation and Adaptation

  • Roger Hull
  • Simon N. Covey

Abstract

Retroelements are genetic entities that exist in both DNA and RNA forms generated by cyclic alternation of transcription and reverse transcription. They have in common a genetic core (the gag-pol core), encoding conserved functions of a structural protein and a replicase. These are supplemented with a variety of cis-acting nucleic acid sequences controlling transcription and reverse transcription. Most retroelements have additional genes with regulatory or adaptive roles, both within the cell and for movement between cells and organisms. These features reflect the variety of mechanisms that have developed to ensure propagation of the elements and their ability to adapt to specific niches in their hosts with which they co-evolve.

Key words

gag-pol core host adaptation pararetroviruses retroelements retroviruses 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Temin H.M., Nature 339, 254–255, 1989.PubMedCrossRefGoogle Scholar
  2. 2.
    Hull R. and Will H., Trends Genet 5, 357–359, 1989.PubMedCrossRefGoogle Scholar
  3. 3.
    Hull R., Semin Virol 3, 373–382, 1992.Google Scholar
  4. 4.
    Finnegan D.J., Curr Biol 4, 641–643, 1994.PubMedCrossRefGoogle Scholar
  5. 5.
    Flavell A.J., Comp Biochem Physiol 110B, 3–15, 1995.Google Scholar
  6. 6.
    Mason W.S., Taylor J.M., and Hull R., Adv Virus Res 32, 35–96, 1987.PubMedCrossRefGoogle Scholar
  7. 7.
    Lockhart B.E.L., Phytopathology 80, 127–131, 1990.CrossRefGoogle Scholar
  8. 8.
    Hohn T. and Futterer J., Semin Virol 2, 55–69, 1991.Google Scholar
  9. 9.
    Boeke J.D. and Corces V.G., Ann Rev Microbiol 43, 403–434, 1989.CrossRefGoogle Scholar
  10. 10.
    Martin S.L., Curr Opinion Genet Dev 1, 505–508, 1991.CrossRefGoogle Scholar
  11. 11.
    Inouye M. and Inouye S., Ann Rev Microbiol 45, 163–186, 1991.CrossRefGoogle Scholar
  12. 12.
    Lampson B.C., Inouye S., and Inouye M., Prog Nucleic Acid Res Mol Biol 40, 1–24, 1991.PubMedCrossRefGoogle Scholar
  13. 13.
    Inouye S. and Inouye M., Curr Opin Genet Dev 3, 713–718, 1993.PubMedCrossRefGoogle Scholar
  14. 14.
    Xiong Y. and Eickbush T.H., Mol Biol Evol. 5, 675–690, 1988.PubMedGoogle Scholar
  15. 15.
    Doolittle R.F., Feng D.-F., Johnson M.S., and McClure M.A., Q Rev Biol 64, 1–30, 1989.PubMedCrossRefGoogle Scholar
  16. 16.
    Xiong Y. and Eickbush T.H., EMBO J 9, 3353–3362, 1990.PubMedGoogle Scholar
  17. 17.
    McClure M.A., Mol Biol Evol 8, 835–856, 1991.PubMedGoogle Scholar
  18. 18.
    Li M.D., Bronson D.L., Lemke T.D., and Faras A.J., Mol Biol Evol 12, 657–670, 1995.PubMedGoogle Scholar
  19. 19.
    Hull R. and Covey S.N., J Gen Virol 67, 1751–1758, 1986.PubMedCrossRefGoogle Scholar
  20. 20.
    Weiss R., Teich N., Varmus H., and Coffin J. (eds). RNA Tumor Viruses, Vol 1. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1982.Google Scholar
  21. 21.
    Weiss R., Teich N., Varmus H., and Coffin J. (eds.), RNA Tumor Viruses, Vol 2. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1985.Google Scholar
  22. 22.
    Coffin J.M. in Fields B.N. et al. (eds.) Virology. Raven, New York, 1990, pp. 1437–1500.Google Scholar
  23. 23.
    Varmus H., Science 240, 1427–1435, 1988.PubMedCrossRefGoogle Scholar
  24. 24.
    Francki R.I.B., Fauquet C.M., Knudson D.L., and Brown F., Arch Virol 2(suppl): 290–299, 1991.Google Scholar
  25. 25.
    Sherker A.H. and Marion P.L., Ann Rev Microbiol 45, 475–508, 1991.CrossRefGoogle Scholar
  26. 26.
    Hirochika H. and Hirochika R., Jpn J Genet 68, 35–46, 1993.PubMedCrossRefGoogle Scholar
  27. 27.
    Grandbastien M.-A., Spielmann A., and Caboche M., Nature 337, 376–380, 1989.PubMedCrossRefGoogle Scholar
  28. 28.
    Voytas D.F. and Asubel F.M., Nature 336, 242–244, 1988.PubMedCrossRefGoogle Scholar
  29. 29.
    Lindauer A., Fraser D., Brüderlein M., and Schmitt R., FEBS Lett 319, 261–266, 1993.PubMedCrossRefGoogle Scholar
  30. 30.
    Boeke J.D. in Berg D. and Howe M. (eds). Mobile DNA. American Society of Microbiology, Washington, DC, 1989, p. 335.Google Scholar
  31. 31.
    Mellor J., Malim M.H., Gull K., Tuite M.F., McReady S., Dibbayawan T., Kingsman S.M., and Kingsman A.J., Nature 318, 583–586, 1985.PubMedCrossRefGoogle Scholar
  32. 32.
    Emori Y., Shiba T., Kanaya S., Inouye S., Yuki S., and Saigo K., Nature 315, 773–776, 1985.PubMedCrossRefGoogle Scholar
  33. 33.
    Song S.U., Gerasimova T., Kurkulos M., Boeke J.D., and Corces V.G., Genes Dev 8, 2046–2057, 1994.PubMedCrossRefGoogle Scholar
  34. 34.
    Kim A., Terzian C., Santamaria P., Pelisson A., Prud’Homme N., and Bucheton A., Proc Natl Acad Sci USA 91, 1285–1289, 1994.PubMedCrossRefGoogle Scholar
  35. 35.
    Fütterer J. and Hohn T., Trends Biol Sci 12, 92–95, 1987.CrossRefGoogle Scholar
  36. 36.
    Kolosha V.O. and Martin S.L., J Biol Chem 270, 2868–2873, 1995.PubMedCrossRefGoogle Scholar
  37. 37.
    Liebold D.M., Swergold G.D., Singer M.F., Thayer R.E., Domboski B.A., and Fanning T.F., Proc Natl Acad Sci USA 87, 6990–6994, 1990.CrossRefGoogle Scholar
  38. 38.
    Evans J.P. and Palmiter R.D., Proc Natl Acad Sci USA 88, 8792–8795, 1991.PubMedCrossRefGoogle Scholar
  39. 39.
    Fan H., Semin Virol 1, 165–174, 1990.Google Scholar
  40. 40.
    Bilanchone V.W., Claypool J.A., Kinsey P.T., and Sandmeyer S.B., Genetics 134, 685–700, 1993.PubMedGoogle Scholar
  41. 41.
    Carvarec L., Jensen S., and Heidmann T., Biochem Bio-phys Res Commun 203, 392–399, 1994.CrossRefGoogle Scholar
  42. 42.
    McLean C., Bucheton A., and Finnegan D.J., Mol Cell Biol 13, 1042–1050, 1993.PubMedGoogle Scholar
  43. 43.
    Trelogan S.A. and Martin S.L., Proc Natl Acad Sci USA 92, 1520–1524, 1995.PubMedCrossRefGoogle Scholar
  44. 44.
    Yen T.S.B., Semin Virol 4, 33–42, 1993.CrossRefGoogle Scholar
  45. 45.
    Rothnie H.M., Chapdelaine Y., and Hohn T., Adv Virus Res 44, 1–67, 1994.PubMedCrossRefGoogle Scholar
  46. 46.
    Qin X-F., Holuigue L., Horvath D.M., and Chua N-H., Plant Cell 6, 863–874, 1994.PubMedCrossRefGoogle Scholar
  47. 47.
    Hou W., Russnak R., and Platt T., EMBO J 13, 446–452, 1994.PubMedGoogle Scholar
  48. 48.
    Kawakami K., Pande S., Faiola B., Moore D.P., Boeke J.D., Farabaugh P.J., Strathern J.N., Nakamura Y., and Garfinkel D.J., Genetics 135, 309–320, 1993.PubMedGoogle Scholar
  49. 49.
    Farabaugh P.J., Zhao H., and Vimaladithan A., Cell 74, 93–103, 1993.PubMedCrossRefGoogle Scholar
  50. 50.
    Kiss-László Z., Blanc S., and Hohn T., EMBO J 14, 3552–3562, 1995.PubMedGoogle Scholar
  51. 51.
    Plant A.L., Covey S.N., and Grierson D., Nucleic Acids Res 13, 8305–8321, 1985.PubMedCrossRefGoogle Scholar
  52. 52.
    Schultze M., Hohn T., and Jiriciny J., EMBO J 9, 1177–1185, 1990.PubMedGoogle Scholar
  53. 53.
    Brierley C. and Flavell A.J., Nucleic Acids Res 18, 2947–2951, 1990.PubMedCrossRefGoogle Scholar
  54. 54.
    Medberry S.L., Lockhart B.E.L., and Olszewski N.E., Nucleic Acids Res 18, 5505–5513, 1990.PubMedCrossRefGoogle Scholar
  55. 55.
    Hay J.H., Jones M.C., Blakebrough M.L., Dasgupta I., Davies J.W., and Hull R., Nucleic Acids Res 19, 2615–2621, 1991.PubMedCrossRefGoogle Scholar
  56. 56.
    Hirochika H., Takatsuji H., Ubasawa A., and Ikeda J.-E., EMBO J 4, 1673–1680, 1985.PubMedGoogle Scholar
  57. 57.
    Fütterer J., Potrykus I., Brau M.P.V., Dasgupta I., Hull R., and Hohn T., Virology 198, 663–670, 1994.PubMedCrossRefGoogle Scholar
  58. 58.
    Avedisov S.N. and Ilyin Y.V., FEBS Lett 350, 147–150, 1994.PubMedCrossRefGoogle Scholar
  59. 59.
    Pélisson A., Song S.U., Prud’homme N., Smith P.A., Bucheton A., and Corces V.G., EMBO J 13, 4401–4411, 1994.PubMedGoogle Scholar
  60. 60.
    Tanda S., Mullor J.L., and Corees V.G., Mol Cell Biol 14, 5392–5401.Google Scholar
  61. 61.
    Green M.R., AIDS Res Rev 3, 41–55, 1993.Google Scholar
  62. 62.
    Levin H.L., Mol Cell Biol 15, 3310–3317, 1995.PubMedGoogle Scholar
  63. 63.
    Charneau P., Alizon M., and Clavel F., J Virol 66, 2814–2820, 1992.PubMedGoogle Scholar
  64. 64.
    Covey S.N. and Hull R. in Wilson T.M.A. and Davies J.W. (eds). Genetic Engineering with Plant Viruses. CRC Press, Boca Raton, FL, 1992, pp. 217–249.Google Scholar
  65. 65.
    Ding D. and Lipshitz H.D., Genet Res Camb 64, 167–181, 1994.CrossRefGoogle Scholar
  66. 66.
    Smith P.A. and Corees V.G., Genetics 139, 215–228, 1995.PubMedGoogle Scholar
  67. 67.
    Lindholm P.F., Kashanchi F., and Brady J.N., Semin Virol 4, 53–60, 1993.CrossRefGoogle Scholar
  68. 68.
    Rethwilm A., Otto E., Baunach G., Maurer B., and Ter Meulen V., Proc Natl Acad Sci USA 88, 941–945, 1991.PubMedCrossRefGoogle Scholar
  69. 69.
    Covey S.N., Sem Virol 2, 151–159, 1991.Google Scholar
  70. 70.
    Summers J., Smith P.M., and Horwich A.L., J Virol 64, 2819–2824, 1990.PubMedGoogle Scholar
  71. 71.
    Tong-Starksen S. and Peterlin B.M., Semin Virol 1, 215–227, 1990.Google Scholar
  72. 72.
    Hirochika H., EMBO J 12, 2521–2528, 1993.PubMedGoogle Scholar
  73. 73.
    Pouteau S., Grandbastien M.-A., and Boceara M., Plant J 5, 535–542, 1994.CrossRefGoogle Scholar
  74. 74.
    Hull R., Semin Virol 2, 89–95, 1991.Google Scholar
  75. 75.
    Arnold E. and Arnold G.F., Adv Vir Res 39, 1–87, 1991.CrossRefGoogle Scholar
  76. 76.
    Maule A.J., Crit Rev Plant Scie 9, 457–473, 1991.CrossRefGoogle Scholar
  77. 77.
    Pirone T.P., Semin Virol 2, 81–87, 1991.Google Scholar
  78. 78.
    Covey S.N., Nucleic Acids Res 14, 623–633, 1986.PubMedCrossRefGoogle Scholar
  79. 79.
    Chec T.R. and Bass B.L., Ann Rev Biochem 55, 599–629, 1986.CrossRefGoogle Scholar
  80. 80.
    Argos P., Nucleic Acids Res 16, 9909–9916, 1988.PubMedCrossRefGoogle Scholar
  81. 81.
    Delarue M., Poch O., Tordo N., Moras D., and Argos P., Protein Eng 3, 461–467, 1990.PubMedCrossRefGoogle Scholar
  82. 82.
    Darnell J.E. and Doolittle W.F., Proc Natl Acad Sci USA 83, 1271–1275, 1986.PubMedCrossRefGoogle Scholar
  83. 83.
    Wintersberger U. and Wintersberger E., Trends Genet 3, 198–202, 1987.CrossRefGoogle Scholar
  84. 84.
    Bronson E.C. and Anderson J.N., J Mol Evol 38, 506–532, 1994.PubMedCrossRefGoogle Scholar
  85. 85.
    Preston B.D., Poiesz B.J., and Loeb L.A., Science 242, 1168–1171, 1988.PubMedCrossRefGoogle Scholar
  86. 86.
    Roberts J. D., Bebenek K., and Kunkel T. A. Science 242, 1171–1173, 1988.PubMedCrossRefGoogle Scholar
  87. 87.
    Takeuchi Y., Nagamo T., and Hoshino H., J Virol 62, 3900–3902, 1988.PubMedGoogle Scholar
  88. 88.
    White S.E., Habera L.F., and Wessler S.R. Proc Natl Acad Sci USA 91, 11792–11796, 1994.PubMedCrossRefGoogle Scholar
  89. 89.
    Wichman H.A., van den Bussche R.A., Hamilton M.J., and Baker R.J., Genetica 86, 287–293, 1992.PubMedCrossRefGoogle Scholar
  90. 90.
    Temin H., Mol Biol Evol 2, 455–468, 1985.PubMedGoogle Scholar
  91. 91.
    Daros J.A. and Flores R., Proc Natl Acad Sci USA 92, 6856–6860, 1995.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Roger Hull
    • 1
  • Simon N. Covey
    • 1
  1. 1.John Innes CentreColney, NorwichUK

Personalised recommendations