Skip to main content

Structure, Function, and Evolution of Bacterial Reverse Transcriptase

  • Chapter
Molecular Evolution of Viruses — Past and Present

Abstract

The discovery of retroelements in the prokaryotes raises intriguing questions concerning their roles in bacteria and the origin and evolution of reverse transcriptases. We first discuss a possible structure of bacterial reverse transcriptases on the basis of the known three-dimensional structure of HIV-1 reverse transcriptase, and how such a putative three-dimensional structure is able to recognize a single primer-template RNA molecule to initiate DNA chain elongation from the 2′-OH group of an internal G residue. This reaction leads to the production of a unique RNA-DNA complex called msDNA (multicopy single-stranded DNA) in which a single-stranded DNA branches out from an RNA molecule via a 2′,5′-phosphodiester linkage. Second, the mobility of the bacterial retroelements called retrons, responsible for the production of msDNA, are discussed and compared with the mobility of group I and group II introns. Third, the original and evolution of bacterial reverse transcriptases are discussed in light of the question of whether the bacterial reverse transcriptases are older than eukaryotic reverse transcriptases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yee T., Furuichi T., Inouye S., and Inouye M., Cell 38, 203–209, 1984.

    Article  PubMed  CAS  Google Scholar 

  2. Furuichi T., Dhundale A., Inouye M., and Inouye S., Cell 48, 47–53, 1987.

    Article  PubMed  CAS  Google Scholar 

  3. Furuichi T., Inouye S., and Inouye M., Cell 48, 55–62, 1987.

    Article  PubMed  Google Scholar 

  4. Dhundale A., Lampson B., Furuichi T., Inouye M., and Inouye S., Cell 57, 1105–1112, 1987.

    Article  Google Scholar 

  5. Lampson B., Sun J., Hsu M-Y., Vallejo-Ramirez J., Inouye S., and Inouye M., Science 243, 1033–1038, 1989.

    Article  PubMed  CAS  Google Scholar 

  6. Lim D. and Maas W.K., Cell 56, 891–904, 1989.

    Article  PubMed  CAS  Google Scholar 

  7. Herzer P.J., Inouye S., Inouye M., and Whittam T.S., J Bacteriol 172, 6175–6181, 1990.

    PubMed  CAS  Google Scholar 

  8. Xiong Y. and Eickbush T.H., EMBO J 9, 3353–3362, 1990.

    PubMed  CAS  Google Scholar 

  9. McClure M.A. in Goff S. and Skalka A. (eds). Reverse Transcriptase. Cold Spring Harbor Press, Cold Spring Harbor, NY, 1993, pp. 425–444.

    Google Scholar 

  10. Temin H.M., Nature 339 254–255, 1989.

    Article  PubMed  CAS  Google Scholar 

  11. Inouye M. and Inouye S., J Bacteriol 174, 2419–2424, 1992.

    PubMed  CAS  Google Scholar 

  12. Inouye M. and Inouye S., Trends Biochem Sci 16,18–21, 1991.

    Article  PubMed  CAS  Google Scholar 

  13. Inouye M. and Inouye S., Ann Rev Microbiol 45, 163–186, 1991.

    Article  CAS  Google Scholar 

  14. Inouye S. and Inouye M., Curr Opin Genet Dev 3, 713–718, 1993.

    Article  PubMed  CAS  Google Scholar 

  15. Varmus H. and Brown P. in Berg D.E. and Howe M.M. (eds). Mobil DNA. American Society for Microbiology, Washington D.C., 1989, pp. 53–108.

    Google Scholar 

  16. Luan D.D., Korman M.H., Jakubczak J.L., and Eickbush T.H., Cell 72, 592–605, 1993.

    Article  Google Scholar 

  17. Wang H. and Lambowitz A.M., Cell 75, 1071–1081, 1993.

    Article  PubMed  CAS  Google Scholar 

  18. Wang G.-H. and Seeger C, Cell 71, 663–670, 1992.

    Article  PubMed  CAS  Google Scholar 

  19. Kohlstaedt L.A., Wang J., Friedman J.M., Rice P.A., and Steitz T.A., Science 256, 1783–1790, 1992.

    Article  PubMed  CAS  Google Scholar 

  20. Jacobo-Molina A., Ding J., Nanni R.G., Clark A.D. Jr., Lu X., Tantillo C, Williams R.L., Kamer G., Ferris A.L., Clark P., Hizi A., Hughes S.H., and Arnold E., Proc Natl Acad Sci USA 90, 6320–6324, 1993.

    Article  PubMed  CAS  Google Scholar 

  21. Steitz T.A., Smerdon S.J., Jager J., and Joyce CM., Science 266, 2022–2025, 1994.

    Article  PubMed  CAS  Google Scholar 

  22. Joyce C.M. and Steitz T.A., Trends Biochem Sci 12, 288–292, 1987.

    Article  CAS  Google Scholar 

  23. Shimamoto T., Hsu M-Y., Inouye S., and Inouye M., J Biol Chem 268, 2684–2692, 1993.

    PubMed  CAS  Google Scholar 

  24. Lampson B.C., Viswanathan M., Inouye M., and Inouye S. J Biol Chem 265, 8490–8496, 1990.

    PubMed  CAS  Google Scholar 

  25. Viswanathan M., Inouye M., and Inouye S., J Biol Chem 264, 13665–13671, 1989.

    PubMed  CAS  Google Scholar 

  26. Lampson B.C., Inouye M., and Inouye S., J Bacteriol173, 5363–5370, 1991.

    PubMed  CAS  Google Scholar 

  27. Hsu M-Y., Xu C, Inouye M., and Inouye S., J Bacteriol 174 , 2384–2387, 1992.

    PubMed  CAS  Google Scholar 

  28. Rice S.A. and Lampson B.C., J Bacteriol 777, 37–45, 1995.

    Google Scholar 

  29. Sun J., Inouye M., and Inouye S., J Bacteriol 775, 4171–4181, 1991.

    Google Scholar 

  30. Maas W.K., Wang C, Lima T., Zubay G., and Lim D., Mol Microbiol, 14, 431–441, 1992.

    Google Scholar 

  31. Lim D., Mol Microbiol 6, 3531–3542, 1992.

    Article  PubMed  CAS  Google Scholar 

  32. Herzer P.J., Inouye S., and Inouye M., Mol Microbiol 6, 345–354, 1992.

    Article  PubMed  CAS  Google Scholar 

  33. Kawaguchi T., Herzer P.J., Inouye M., and Inouye S., Mol Microbiol 6, 355–361, 1992.

    Article  PubMed  CAS  Google Scholar 

  34. Inouye S., Sunshine M.G., Six E.W., and Inouye M., Science 252, 969–971, 1991.

    Article  PubMed  CAS  Google Scholar 

  35. Hsu M-Y., Inouye M., and Inouye S., Proc Natl Acad Sci 87, 9454–9458, 1990.

    Article  PubMed  CAS  Google Scholar 

  36. Lim D. and Maas W.K., Mol Microbiol 4, 2201–2204, 1990.

    Article  PubMed  CAS  Google Scholar 

  37. Lim D., Mol Microbiol 5, 1863–1872, 1991.

    Article  PubMed  CAS  Google Scholar 

  38. Kirchner J., Lim D., Witkin E.M., Garvey N., and Roeg-ner-Maniscaleo V., Mol Microbiol 6, 2815–1824, 1992.

    Article  PubMed  CAS  Google Scholar 

  39. Beifort M., Reaban M.E., Coetzee T., and Dalgaard J.Z., J Bacteriol 777, 3897–3903, 1995.

    Google Scholar 

  40. Woese CR., Microbiol Rev 57, 221–271, 1989.

    Google Scholar 

  41. Shimkets L. and Woese CR., Proc Natl Acad Sci USA 89, 9459–9463, 1992.

    Article  PubMed  CAS  Google Scholar 

  42. Sharp P.M., J Mol Evol 33, 23–33, 1991.

    Article  PubMed  CAS  Google Scholar 

  43. Inouye S., Hsu M-Y., Eagle S.G., and Inouye M., Cell 56, 709–717, 1989.

    Article  PubMed  CAS  Google Scholar 

  44. Rice S.A., Bieber J., Chun J.Y., Stacey G., and Lampson B.C., J Bacteriol 775, 4250–4254, 1993.

    Google Scholar 

  45. Lampson B.C., Inouye M., and Inouye S., Cell 56, 701–707, 1989.

    Article  PubMed  CAS  Google Scholar 

  46. Shimamoto T., Inouye M., and Inouye S., J Biol Chem 270, 581–588, 1995.

    Article  PubMed  CAS  Google Scholar 

  47. Eickbush T.H. in Morse S.S. (ed). Evolutionary Biology of Viruses. Raven Press, New York, 1994, pp. 121–157.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Inouye, S., Inouye, M. (1996). Structure, Function, and Evolution of Bacterial Reverse Transcriptase. In: Becker, Y. (eds) Molecular Evolution of Viruses — Past and Present. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1407-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1407-3_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8610-3

  • Online ISBN: 978-1-4613-1407-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics