Skip to main content

Graph-Based Representations of Discrete Functions

  • Chapter

Abstract

BDDs are now commonly used for representing Boolean functions because of their efficiency in terms of time and space. There are many cases in which conventional algorithms can be significantly improved by using BDDs. Recently, several variants of BDDs have been developed to represent other kinds of discrete functions, such as multi-valued functions, cube sets, or arithmetic formulas. These techniques are useful not only for VLSI CAD but also for various areas in Computer Science. In this chapter, we survey the techniques of BDD and its variants. We explain the basic method of BDD manipulation, and show the relationships between the different types of BDDs.

Keywords

  • Boolean Function
  • Terminal Node
  • Discrete Function
  • Reduction Rule
  • Binary Decision Diagram

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. B. Akers, “Binary decision diagrams”, IEEE Trans. on Computers, Vol. C-27, No. 6, pp. 509–516, June 1978.

    CrossRef  Google Scholar 

  2. R. E. Bryant, “Graph-based algorithms for Boolean function manipulation”, IEEE Trans. on Computers, Vol. C-35, No. 8, pp. 677–691, Aug. 1986.

    CrossRef  Google Scholar 

  3. H.-T. Liaw and C.-S. Lin, “On the OBDD-representation of general Boolean functions”, IEEE Trans. on Computers, Vol. C-41, No. 6, pp. 661–664, June 1992.

    CrossRef  MathSciNet  Google Scholar 

  4. N. Ishiura and S. Yajima, “A class of logic functions expressible by a polynomial-size binary decision diagrams”, In Proc. Synthesis and Simulation Meeting and International Interchange (SASIMI’90, Japan), pp. 48–54, Oct. 1990.

    Google Scholar 

  5. S. Minato, N. Ishiura and S. Yajima, “Shared binary decision diagram with attributed edges for efficient Boolean function manipulation”, Proc. 27th IEEE/ACM DAC, pp. 52–57, June 1990

    Google Scholar 

  6. Bill Lin and Fabio Somenzi, “Minimization of symbolic relations”, Proc. IEEE/ACM ICCAD’90, pp. 88–91, Nov. 1990.

    Google Scholar 

  7. J. C. Madre and J. P. Billon, “Proving circuit correctness using formal comparison between expected and extracted behaviour”, Proc. 25th ACM/IEEE DAC, pp. 205–210, June 1988.

    Google Scholar 

  8. S. Tani, K. Hamaguchi, and S. Yajima, “The complexity of the optimal variable ordering of a shared binary decision diagram”, Technical Report 93–6, Department of Information Science, Faculty of Science, University of Tokyo, Dec. 1993.

    Google Scholar 

  9. N. Ishiura, H. Sawada, and S. Yajima, “Minimization of binary decision diagrams based on exchanges of variables”, Proc. IEEE/ACM ICCAD’91, pp. 472–475, Nov. 1991.

    Google Scholar 

  10. M. Fujita, H. Fujisawa and N. Kawato, “Evaluation and improvement of Boolean comparison method based on binary decision diagrams”, Proc. IEEE/ACM ICCAD ’88, pp. 2–5, Nov. 1988.

    Google Scholar 

  11. S. Malik, A. R. Wang, R. K. Brayton, and A. L. Sangiovanni-Vincentelli, “Logic verification using binary decision diagrams in a logic synthesis environment”, Proc. IEEE/ACM ICCAD’88, pp. 6–9, Nov. 1988.

    Google Scholar 

  12. K. M. Butler, D. E. Ross, R. Kapur, and M. R. Mercer, “Heuristics to compute variable orderings for efficient manipulation of ordered binary decision diagrams”, Proc. of 28th ACM/IEEE DAC, pp. 417–420, June 1991.

    Google Scholar 

  13. M. Fujita, Y. Matsunaga, and T. Kakuda, “On variable ordering of binary decision diagrams for the application of multi-level logic synthesis”, Proc. IEEE EDAC’91, pp. 50–54, February 1991.

    Google Scholar 

  14. S. Minato, “Minimum-width method of variable ordering for binary decision diagrams”, IEICE Trans. Fundamentals, Vol. E75-A, No. 3, pp. 392–399, Mar. 1992.

    Google Scholar 

  15. R. Rudell, “Dynamic variable ordering for ordered binary decision diagrams”, Proc. IEEE/ACM ICCAD’93, pp. 42–47, Nov. 1993.

    Google Scholar 

  16. E. M. Clarke, K. L. McMillan, X. Zhao, M. Fujita, and J. Yang, “Spectral transforms for large Boolean functions with applications to technology mapping”, Proc. 80th ACM/IEEE DAC, pp. 54–60, June 1993. (Also Chapter 4 of this book).

    Google Scholar 

  17. R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii, A. Pardo, and F. Somenzi, “Algebraic decision diagrams and their applications”, Proc. IEEE/ACM ICCAD’93, pp. 188–191, Nov. 1993.

    Google Scholar 

  18. J. Jain, J. Bitner, D. Fussell, and J. Abraham, “Probabilistic Design Verification”, Proc. IEEE/ACM ICCAD’91, pp. 468–471, Nov. 1991. (Also Chapter 6 of this book).

    Google Scholar 

  19. A. Srinivasan, T. Kam, S. Malik, and R. Brayton, “Algorithms for Discrete Function Manipulation”, Proc. IEEE/ACM ICCAD’90, pp. 92–95, Nov. 1990.

    Google Scholar 

  20. S. Minato, “BEM-II:an arithmetic Boolean expression manipulator using BDDs”, IEICE Trans. Fundamentals, Vol. E76-A, No. 10, pp. 1721–1729, Oct. 1993.

    Google Scholar 

  21. Y.-T. Lai, M. Pedram, and S. B. Vrudhula, “FGILP: An integer linear program solver based on function graphs”, Proc. IEEE/ACM ICCAD’93, pp. 685–689, Nov. 1993. (Also Chapter 5 of this book).

    Google Scholar 

  22. R. E. Bryant and Y.-A. Chen, “Verification of arithmetic functions with binary moment diagrams”, Proc. 82nd ACM/IEEE DAC, June 1995.

    Google Scholar 

  23. J. R. Burch, E. M. Clarke, K. L. McMillan and D. L. Dill, “Sequential circuit verification using symbolic model checking”, Proc. 27th ACM/IEEE DAC, pp. 46–51, June 1990.

    Google Scholar 

  24. O. Coudert and J. C. Madre, “Implicit and incremental computation of primes and essential implicant primes of Boolean functions”, Proc. 29th ACM/IEEE DAC, pp. 36–39, June 1992.

    Google Scholar 

  25. S. Minato, “Zero-suppressed BDDs for set manipulation in combinatorial problems”, Proc. 80th ACM/IEEE DAC, pp. 272–277, June 1993.

    Google Scholar 

  26. S. Minato, “Fast generation of irredundant sum-of-products forms from binary decision diagrams”, Proc. of Synthesis and Simulation Meeting and International Interchange (SASIMI’92, Japan), pp. 64–73, April 1992.

    Google Scholar 

  27. S. Minato, “Fast weak-division method for implicit cube representation”, Proc. of Synthesis and Simulation Meeting and International Interchange (SASIMI’98, Japan), pp. 423–432, October 1993.

    Google Scholar 

  28. U. Kebschull, E. Schubert and W. Rosenstiel, “Multilevel Logic Synthesis Based on Functional Decision Diagrams”, IEEE EDAC’92, pp. 43–47, Mar. 1992.

    Google Scholar 

  29. R. Drechsler, A. Sarabi, M. Theobald, B. Becker and M. Perkowski, “Efficient representation and manipulation of switching functions based on ordered Kronecker functional decision diagrams”, Proc. 31st ACM/IEEE DAC, pp. 415–419, June 1994. (Also Chapter 7 of this book).

    Google Scholar 

  30. T. Sasao, “Representation of Logic Functions using EXOR Operators”, IFIP WG. 10.5 Workshop on Applications of the Reed-Muller Expansions in Circuit Design Aug., 1995. (Also Chapter 2 of this book).

    Google Scholar 

  31. S. Minato, “Implicit manipulation of polynomials using zero-suppressed BDDs”, IEEE/ACM ED&TC’95, pp. 449–454, Mar. 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Minato, Si. (1996). Graph-Based Representations of Discrete Functions. In: Sasao, T., Fujita, M. (eds) Representations of Discrete Functions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1385-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1385-4_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8599-1

  • Online ISBN: 978-1-4613-1385-4

  • eBook Packages: Springer Book Archive