Satisfiability Problems for OFDDs

  • Ralph Werchner
  • Thilo Harich
  • Rolf Drechsler
  • Bernd Becker

Abstract

We investigate the complexity of problems on Ordered Functional Decision Diagrams (OFDDs) related to satisfiability, i.e. SAT-ONE, SAT-ALL, and SAT-COUNT. We prove that SAT-ALL has a running time linear in the product of the number of satisfying assignments and the size of the given OFDD. Counting the satisfying assignments in an OFDD is proved to be #P-complete, and thus not possible in polynomial time unless P=NP.

Keywords

Agram 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. Becker, R. Drechsler, and M. Theobald, “On the implementation of a package for efficient representation and manipulation of functional decision diagrams,” IFIP WG 10.5 Workshop on Applications of the Reed-Muller Expansion in Circuit Design, pp. 162-169, Sept. 1993.Google Scholar
  2. [2]
    B. Becker, R. Drechsler, and R. Werchner, “On the relation between BDDs and FDDs,” LATIN, LNCS 911, pp. 72-83, Apr. 1995.Google Scholar
  3. [3]
    R.E. Bryant, “Graph — based algorithms for Boolean function manipulation,” IEEE Trans. Comput., vol. C-35, pp. 677-691, Aug. 1986.CrossRefGoogle Scholar
  4. [4]
    R. Drechsler and B. Becker, “Sympathy: Fast exact minimization of Fixed Polarity Reed-Muller expressions for symmetric functions,” Proc. European Design & Test Conf., pp. 91-97, Mar. 1995.Google Scholar
  5. [5]
    R. Drechsler, A. Sarabi, M. Theobald, B. Becker, and M.A. Perkowski, “Efficient representation and manipulation of switching functions based on Ordered Kro-necker Functional Decision Diagrams,” Proc. Design Automation Conf., pp. 415-419, June 1994.Google Scholar
  6. [6]
    R. Drechsler, M. Theobald, and B. Becker, “Fast OFDD based minimization of Fixed Polarity Reed-Muller expressions,” to be published in IEEE Trans. Comput., 1996.Google Scholar
  7. [7]
    U. Kebschull and W. Rosenstiel, “Efficient graph-based computation and manipulation of functional decision diagrams,” Proc. European Conf. on Design Automation, pp. 278-282, Mar. 1993.Google Scholar
  8. [8]
    U. Kebschull, E. Schubert, and W. Rosenstiel, “Multilevel logic synthesis based on functional decision diagrams,” Proc. European Conf. on Design Automation, pp. 43-47, Mar. 1992.Google Scholar
  9. [9]
    J. Van Leeuven, editor, Handbook of Theoretical Computer Science, Algorithms and Complexity. The MIT Press, 1990.Google Scholar
  10. [10]
    C. Meinel, “Modified Branching Programs and their Computational Power,” LNCS 370, Apr. 1989.Google Scholar
  11. [11]
    E. Schubert, U. Kebschull, and W. Rosenstiel, “FDD based technology mapping for FPGA,” In Proc. EUROASIC, pp. 14-18, Mar. 1992.Google Scholar
  12. [12]
    D. Sieling and I. Wegener, “Reduction of BDDs in linear time,” Information Processing Letters, 48(3):139-144, 1993.MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    C.C. Tsai and M. Marek-Sadowska, “Boolean matching using generalized Reed-Muller forms,” Proc. Design Automation Conf., pp. 339-344, June 1994.Google Scholar
  14. [14]
    C.C. Tsai and M. Marek-Sadowska, “Detecting symmetric variables in Boolean functions using generalized Reed-Muller forms,” In Int’l Symp. Circ. and Systems, 1994.Google Scholar
  15. [15]
    I. Wegener, The Complexity of Boolean Functions. John Wiley & Sons Ltd., and B.G. Teubner, Stuttgart, 1987.MATHGoogle Scholar
  16. [16]
    I. Wegener, “Efficient data structures for Boolean functions,” Discrete Mathematics, 136:347-372, Dec. 1994.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Ralph Werchner
    • 1
  • Thilo Harich
    • 1
  • Rolf Drechsler
    • 2
  • Bernd Becker
    • 2
  1. 1.Computer Science DepartmentJ.W. Goethe-UniversityFrankfurt am MainGermany
  2. 2.Institute of Computer ScienceAlbert-Ludwigs-UniversityFreiburg im BreisgauGermany

Personalised recommendations