Advertisement

Hardware Implementation

  • Mukund Padmanabhan
  • Ken Martin
  • Gábor Péceli
Part of the The Kluwer International Series in Engineering and Computer Science book series (SECS, volume 343)

Abstract

In the previous chapters, we discussed the theory and application of various signal processing blocks that fall in the framework of an observer. In this chapter, we will consider hardware implementations of some of these signal-processing blocks.

Keywords

Hardware Implementation Adaptive Filter Input Frequency Filter Structure Signal Flow Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [Ahu87]
    B. K. Ahuja. An Improved Frequency Compensation Technique for CMOS Operational Amplifiers. IEEE Journal of Solid-State Circuits, 18:629–633, Dec 1987.CrossRefGoogle Scholar
  2. [BT85]
    M. Banu and Y. Tsividis. An Elliptic Continuous-Time CMOS Filter with On-Chip Automatic Tuning. IEEE Journal of Solid-State Circuits, 20:1114–1121, Dec 1985.CrossRefGoogle Scholar
  3. [BW88]
    K. Bult and H. Wallinga. A CMOS Analog Continuous-Time Delay Line with Adaptive Delay-Time Control. IEEE Journal of Solid-State Circuits, 23:759–766, Jun 1988.CrossRefGoogle Scholar
  4. [DR85]
    S. M. Denver and D. Renshaw. VLSI signal processing: A bit-serial Approach. Addison-Wesley, 1985.Google Scholar
  5. [Feh91]
    B. Feher. Field-Programmable Gate Array Implementation of the Recursive Walsh-Hadamard Transformation. In International Conference on DSP Applications and Technology, pages 250–253, 1991.Google Scholar
  6. [Feh92]
    B. Feher. Resonator-Based Digital Filters Using Field Programmable Gate Array Elements. In Fifth Annual IEEE International ASIC Conference, pages 119–122, 1992.CrossRefGoogle Scholar
  7. [GSS85]
    R. L. Geiger and E. Sanchez-Sinencio. Active Filter Design Using Operational Transconductance Amplifiers: A Tutorial. IEEE Circuits and Devices Magazine, pages 20–32, Mar 1985.Google Scholar
  8. [GT+90]
    V. Gopinathan, Y. P. Tsividis, et al. Design Considerations for High-Frequency Continuous-Time Filters and Implementation of an Antialiasing Filter for Digital Video. IEEE Journal of Solid-State Circuits, 25:1368–1378, Dec 1990.CrossRefGoogle Scholar
  9. [H+90]
    H. Hsieh et al. Third-Generation Architecture boosts speed and density of Field-Programmable Gate Arrays. In Custom Integrated Circuits Conference, pages 31.2.1–31.2.7, 1990.Google Scholar
  10. [JSS91]
    D. A. Johns, W. M. Snelgrove, and A. S. Sedra. Continuous-Time LMS Adaptive Recursive Filters. IEEE Transactions on Circuits and Systems, 38:769–778, Jul 1991.CrossRefGoogle Scholar
  11. [Kho91]
    J. M. Khoury. Design of a 15-MHz CMOS Continuous-Time Filter with On-Chip Tuning. IEEE Journal of Solid-State Circuits, 26:1988–1997, Dec 1991.CrossRefGoogle Scholar
  12. [KJ88]
    F. Krummenacher and N. Joehl. A 4-MHz CMOS Continuous-Time Filter with On-Chip Automatic Tuning. IEEE Journal of Solid-State Circuits, 23:750–758, Jun 1988.CrossRefGoogle Scholar
  13. [KM91]
    T. Kwan and K. Martin. An Adaptive Analog Continuous-Time Biquadratic Filter. IEEE Journal of Solid-State Circuits, 26:859–867, Jun 1991.CrossRefGoogle Scholar
  14. [Lyo76]
    R. F. Lyon. Two’s Complement pipeline multipliers. IEEE Transactions on Communications, pages 418–425, Apr 1976.Google Scholar
  15. [PL74]
    A. Peled and B. Liu. A new hardware realization of digital filters. IEEE Transactions on Acoustics Speech and Signal Processing, pages 456–462, Dec 1974.Google Scholar
  16. [PM89]
    K. K. Parhi and D. G. Messerschmitt. Pipeline Interleaving and Parallelism in Recursive Digital Filters- Part i: Pipelining using Scattered Look-Ahead and Decomposition. IEEE Transactions on Acoustics Speech and Signal Processing, 37:1099–1117, July 1989.MATHCrossRefGoogle Scholar
  17. [PM94]
    M. Padmanabhan and K. Martin. A CMOS Analog Multi-Sinusoidal Phase-Locked-Loop. IEEE Journal of S olid-State Circuits, 29:1046–1057, Sep 1994.CrossRefGoogle Scholar
  18. [PS88]
    C. S. Park and R. Schaumann. Design of a 4-MHz analog integrated CMOS transconductance-C bandpass filter. IEEE Journal of Solid-State Circuits, 19:987–996, Aug 1988.CrossRefGoogle Scholar
  19. [SK90]
    H. J. Song and C. K. Kim. An MOS Four-Quadrant Analog Multiplier Using Simple Two-Input Squaring Circuits with Source Followers. IEEE Journal of Solid-State Circuits, 25:841–848, Jun 1990.CrossRefGoogle Scholar
  20. [Tay92]
    G. E. Taylor. Continuous-time adaptive filters for spectral estimation and line enhancement. M. S. Thesis, University of California, Los Angeles, 1992.Google Scholar
  21. [TBK86]
    Y. Tsividis, M. Banu, and J. Khoury. Continuous-time MOSFET-C filters in VLSI. IEEE Transactions on Circuits and Systems, 33:125–139, Feb 1986.CrossRefGoogle Scholar
  22. [WA90]
    Y. T. Wang and A. A. Abidi. CMOS Active Filter Design at Very High Frequencies. IEEE Journal of Solid-State Circuits, 25:1562–1573, Dec 1990.CrossRefGoogle Scholar
  23. [WMG93]
    S. D. Willingham, K. Martin, and A. Ganesan. A BiCMOS Low-Distortion 8-MHz Low-Pass Filter. IEEE Journal of Solid-State Circuits, 28:1234–1245, Dec 1993.CrossRefGoogle Scholar
  24. [ZP85]
    R. E. Ziemer and R. L. Peterson. Digital Communications and Spread Spectrum Systems. MacMillan, 1985.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Mukund Padmanabhan
    • 1
  • Ken Martin
    • 2
  • Gábor Péceli
    • 3
  1. 1.IBM T. J. Watson Research CenterUSA
  2. 2.University of TorontoCanada
  3. 3.Technical University of BudapestHungary

Personalised recommendations