Skip to main content

Role of bradykinin in the antihypertrophic effects of enalapril in the newborn pig heart

  • Chapter
Biochemical Regulation of Myocardium

Abstract

Rapid growth of the left ventricle of the newborn pig heart can be restrained by treating piglets with the angiotensin converting enzyme inhibitor, enalapril maleate. This reduced rate of growth is reflected in vitro by reduced rates of ribosome formation and protein synthesis, and may be due to decreased availability of angiotensin II (AII), a potentially hypertrophic agent; decreased numbers of AII receptors; increased availability of bradykinin, a potentially antihypertrophic agent; or reduced hemodynamic load on the left ventricle. Because enalapril decreases degradation of bradykinin, the role of bradykinin as an inhibitor of cardiac growth in the newborn heart was investigated. Addition of 1 × 10−5 M bradykinin and 1 × 10−6 M enalapril to the perfusate of isolated hearts from 2 day old piglets did not significantly alter heart rate, contents of ATP or creatine phosphate or rates of ribosome formation or protein synthesis during 1 h of perfusion. Similarly, exposure of myocytes isolated from the left ventricular free wall of piglets to 5 × 10−6 M bradykinin for 72 h did not alter the rate of [3H]-phenylalanine incorporation into total protein. The reduced rate of left ventricular growth in vivo caused by enalapril administration was not reversed by simultaneous treatment with the specific bradykinin receptor antagonist, HOE 140. HOE 140 alone did not alter ventricular growth as compared to hearts from untreated piglets. In summary, these results demonstrate that the reduced rate of left ventricular growth in vivo and the reduced rate of ribosome formation and protein synthesis in the left ventricle in vitro after enalapril treatment of piglets is not the result of an inhibitory effect of bradykinin on cardiac growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker KM, Chemin MI, Wixson SA, Aceto JF: Renin-angiotensin system involvement in pressure overload cardiac hypertrophy in rats. Am J Physiol 259: H324–H332, 1990

    PubMed  CAS  Google Scholar 

  2. Beinlich CJ, Baker KM, White GJ, Morgan HE: Control of growth in neonatal pig heart. Am J Physiol 261: (Suppl 1) 3–7,1991

    PubMed  CAS  Google Scholar 

  3. Beinlich CJ, Rissinger CJ, Morgan HE: Mechanisms of rapid growth in the neonatal pig heart. J Mol Cell Cardiol 27: 273–281,1995

    Article  PubMed  CAS  Google Scholar 

  4. Morgan HE, Baker KM: Cardiac hypertrophy. Mechanical, neural and endocrine dependence. Circ 83: 13–25, 1991

    CAS  Google Scholar 

  5. Linz W, Schölkens BA: Role of bradykinin in the cardiac effects of angiotensin-converting enzyme inhibitors. J Cardiovas Pharm 20 (Suppl 9): S83–S90, 1992

    Article  CAS  Google Scholar 

  6. Linz W, Schölkens BA: A specific B2-bradykinin receptor antagonist HOE 140 abolishes antihypertrophic effect of ramipril. Br J Pharmacol 105:771–772, 1992

    PubMed  CAS  Google Scholar 

  7. Linz W, Weimer G, Schölkens BA: Bradykinin prevents left ventricular hypertrophy in rats. J Hypertension 11 (Suppl 5): S96–S97,1993

    Article  CAS  Google Scholar 

  8. Beinlich CJ, White GJ, Baker KM, Morgan HE: Angiotensin II and left ventricular growth in newborn pig heart. J. Mol Cell Cardiol 23: 1031–1038, 1991

    Article  PubMed  CAS  Google Scholar 

  9. Beinlich CJ, Baker KM, Morgan HE: α-Adrenergic receptor agonists stimulate ribosome formation in hearts from enalapril-treated piglets. J Mol Cell Cardiol 25: 395–106, 1993

    Article  PubMed  CAS  Google Scholar 

  10. Munro HN, Fleck A: The determination of nucleic acids. In: D. Glick (ed.) Methods in Biochemical Analysis. Wiley, New York, 1966, 14: pp 114–176

    Google Scholar 

  11. Tsanev R, Markov GG: Substances interfering with spectrophotometric estimation of nucleic acids and their elimination by the two-wave-length method. Biochim Biophys Acta 42: 442–152, 1960

    Article  PubMed  CAS  Google Scholar 

  12. Lowry OH, Rosenbrough NJ, Fair ASL, Randall RJ: Protein measurement with Folin phenol reagent. J Biol Chem 193: 265–275, 1951

    PubMed  CAS  Google Scholar 

  13. Camacho J, Peterson C, White G., Morgan HE: Accelerated ribosome formation and growth in neonatal pig heart. Am J Physiol 258: C86–C91,1990

    PubMed  CAS  Google Scholar 

  14. Peterson C, Whitman V, Watson PA, Schuler HG, Morgan HE: Mechanisms of differential growth of heart ventricles in newborn pigs. Circ Res 64: 360–369, 1989

    PubMed  CAS  Google Scholar 

  15. Chua BHL, Russo LA, Gordon EE, Kleinhans BJ, Morgan HE: Faster ribosome synthesis induced by elevated aortic pressure in rat heart. Am J Physiol 252: C323–C327, 1987

    PubMed  CAS  Google Scholar 

  16. Wollenberger A, Ristau O, Schoffa G: Eine einfache Technik der extrem schnellen Abkuhlung größerer Gewebestucke. Arch Ges Physiol 270: 399–412, 1969

    Google Scholar 

  17. Beinlich CJ, Morgan HE: Development of a cell culture system for studies of the growth of neonatal pig cardiomyocytes. In: Y. Yazaki (ed.) Cardiac Development and Gene Regulation, Excerpta Medica, Tokyo, 1995, pp 65–75

    Google Scholar 

  18. Smolich JJ, Soust M, Berger PJ, Walker AM: Indirect relation between rises in oxygen consumption and left ventricular output at birth in lambs. Circ Res 71: 443–450, 1992

    PubMed  CAS  Google Scholar 

  19. Riemenschneider TA, Brenner RA, Mason DT: Maturational changes in myocardial contractile state of newborn lambs. Pediatr Res 5: 349–356, 1981

    Google Scholar 

  20. Anderson PAW, Glick KL, Manring A, Crenshaw C Jr.: Developmental changes in cardiac contractility in fetal and post natal sheep: in vitro and in vivo. Am J Physiol 247: H371–H379, 1984

    PubMed  CAS  Google Scholar 

  21. Comline RS, Silver M: The composition of fetal and maternal blood during parturition in the ewe. J Physiol (London) 222: 233–256, 1972

    CAS  Google Scholar 

  22. Davidson D: Circulating vasoactive substances and hemodynamic adjustments at birth in lambs. J Appl Physiol 63: 676–684, 1987

    PubMed  CAS  Google Scholar 

  23. Padbury JF, Martinez AM: Sympathoadrenal system activity at birth: Integration of postnatal adaption. Semin Perinatol 12: 163–172, 1988

    PubMed  CAS  Google Scholar 

  24. Kirkpatrick SE, Covell JM, Friedman WF: A new technique for the continuous assessment of fetal and neonatal cardiac performance. Am J Obstet Gynecol 116: 963–972, 1973

    PubMed  CAS  Google Scholar 

  25. Morgan HE, Xenophontos XP, Haneda T, McGlaughin S, Watson PA: Stretch-anabolism transduction. J Appl Cardiol 4: 415–422, 1989

    Google Scholar 

  26. Sadoshima J, Izumo S: Molecular characterization of angiotensin II-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ Res 73: 413–423, 1993

    PubMed  CAS  Google Scholar 

  27. Sadoshima J, Xu Y, Slayter HS, Izumo S: Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell 75: 977–984, 1993

    Article  PubMed  CAS  Google Scholar 

  28. Speth RC, Khosla MC, Spech MM, Ferrario CM: Rat (Ile 5) but not bovine (Val5) angiotensin raises plasma norepinephrine in rats. Hypertension 3 (Suppl 11): II25–II29, 1981

    Google Scholar 

  29. Campbell DJ, Kladis A, Duncan AM: Effects of converting enzyme inhibitors on angiotensin and bradykinin peptides. Hypertension 23: 439–449, 1994

    PubMed  CAS  Google Scholar 

  30. Wirth K, Hock FJ, Albus U, Linz W, Alpermann HG, Anagnostopoulos H, Henke St, Breipohl G, König W, Knolle J, Schölkens BA: HOE 140 a new potent and long acting bradykinin antagonist: in vivo studies. Br J Pharmacol 102: 774–777, 1991

    PubMed  CAS  Google Scholar 

  31. Rhaleb NE, Yang XP, Scicli AG, Carretero OA: Role of kinins and nitric oxide in the antihypertrophic effect of ramipril. Hypertension 23 (Part 2): 865–868, 1994

    PubMed  CAS  Google Scholar 

  32. Minshall RD, Nakamura F, Becker RP, Rabito SF: Characterization of bradykinin B2 receptors in adult myocardium and neonatal rat cardiomyocytes. Circ Res 76: 773–780, 1995

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Beinlich, C.J., Rissinger, C.J., Vitkauskas, K.J., Morgan, H.E. (1996). Role of bradykinin in the antihypertrophic effects of enalapril in the newborn pig heart. In: Vetter, R., Krause, EG. (eds) Biochemical Regulation of Myocardium. Developments in Molecular and Cellular Biochemistry, vol 19. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1289-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1289-5_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8551-9

  • Online ISBN: 978-1-4613-1289-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics