Effects of anti-peptide antibodies against the second extracellular loop of human M2 muscarinic acetylcholine receptors on transmembrane potentials and currents in guinea pig ventricular myocytes

  • Rongrui Zhao
  • Wenze Wang
  • Bowei Wu
  • Johan Hoebeke
  • Åke Hjalmarson
  • Michael L. X. Fu
Chapter
Part of the Developments in Molecular and Cellular Biochemistry book series (DMCB, volume 19)

Abstract

The effects of anti-peptide antibodies against the second extracellular loop of human M2 muscarinic receptor on transmembrane potentials and currents in guinea pig single ventricular cells were analyzed using whole-cell patch clamp technique. These effects were compared with those of the muscarinic receptor agonists carbachol and acetylcholine. The antibodies shortened the action potential duration in a dose-dependent manner. By using a ramp or step rectangular pulse protocol, it was found that the antibodies increased the outward K+ current and decreased the inward basal ICa significantly. The reversal potential of both carbachol- and antibody-induced extra currents were close to −80 mV, being in proximity to the calculated Ek of −90 mV. A β-adrenergic receptor agonist, isoprenaline, prolonged the action potential and increased the overshoot which could be inhibited by both antibody and carbachol. Isoprenaline increased inward ICa and outward Ik simultaneously. Both antibody and carbachol could significantly reduce the isoprenaline-stimulated ICa but not the isoprenaline-stimulated Ik. The antibody- or carbachol-induced outward K+ current and the depressant effects of antibody and carbachol on isoprenaline-stimulated ICa were partially antagonized by atropine. These results suggest that the anti-M2 muscarinic receptor antibodies display a stimulatory activity similar to muscarinic receptor agonist on the receptor-mediated electrophysiological events.

Key words

antibody outward K+ current inward Ca2+ current patch clamp 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dohlman HG, Caron MG, DeBlasi A, Frielle T, Lefkowitz RJ: Role of extracellular disulfide-bounded cysteines in the ligand binding function of the β2 adrenergic receptor. Biochemistry 29: 2335–2342, 1990PubMedCrossRefGoogle Scholar
  2. 2.
    Liggett SB, Bouvier M, O’Dowd BF, Caron MG, Lefkowitz RJ, DeBlasi A: Substitution of an extracellular cystein in the β2 adrenergic receptor enhances agonist-promoted phosphorylation and receptor desensitization. Biochem Biophys Res Commun 165: 257–263, 1989PubMedCrossRefGoogle Scholar
  3. 3.
    Saverese TM, Wang CD, Fraser CM: Site-directed mutagenesis of the rat M1 muscarinic acetylcholine receptor. Role of conserved cysteines in receptor function. J Biol Chem 267: 11439–11448, 1992Google Scholar
  4. 4.
    Fu LXM, Magnusson Y, Bergh C-H, Lijeqvist JA, Waagstein F, Hjalmarson Å, Hoebeke J: Localization of a functional autoimmune epitope on the muscarinic acetylcholine receptor in patients with idiopathic dilated cardiomyopathy. J Clin Invest 91: 1964–1968, 1993PubMedCrossRefGoogle Scholar
  5. 5.
    Fu LXM, Hoebeke J, Matsui S, Matoba M, Magnusson Y, Hedner T, Herlitz H, Hjalmarson Å: Autoantibodies against cardiac G-protein coupled receptors define different population with cardiomyopathy but not with hypertension. Clin Immunol Immunopathol 72: 15–20, 1994PubMedCrossRefGoogle Scholar
  6. 6.
    Matsui S, Fu LXM, Shimizu M, Fukuoka T, Asaji T, Teraoka K, Hirakawa T, Takokoshi N, Murakami E: Serum autoantibodies against G-protein coupled cardiac receptors in patients with dilated cardiomyopathy. Autoimmunity 21: 85–88, 1995PubMedCrossRefGoogle Scholar
  7. 7.
    Fu LXM, Herlitz H, Wallukat G, Hilme E, Hedner T, Hoebeke J, Hjalmarson Å: A functional autoimmune epitope on alpha 1 adrenoceptors in patients with malignant hypertension. Lancet 344: 1664–1668, 1994CrossRefGoogle Scholar
  8. 8.
    Fu LXM, Schulze W, Hjalmarson Å, Hoebeke J: Immunocytochemical localization of M2 muscarinic receptor in rat ventricles using anti-peptide antibodies. J Histochem Cytochem 42: 337–343, 1994PubMedCrossRefGoogle Scholar
  9. 9.
    Schulze W, Fu LXM, Hoebeke J, Hjalmarson Å: Localization of muscarinic receptors in human heart biopsies using rabbit anti-peptide antibodies. J Mol Cell Cardiol 27: 1757–1764, 1995PubMedCrossRefGoogle Scholar
  10. 10.
    Fu LXM, Wallukat G, Hjalmarson Å, Hoebeke J: Agonist-like activity of anti-peptide antibodies to autoimmune epitope on the second extracellular loop of the human muscarinic receptor. Receptors and Channels 2: 121–130, 1994PubMedGoogle Scholar
  11. 11.
    Fu LXM, Schulze W, Wallukat G, Hjalmarson Å, Hoebeke J: Functional epitope analysis of the second extracellular loop of the human heart muscarinic acetylcholine receptor. J Mol Cell Cardiol 27: 427–436, 1995PubMedCrossRefGoogle Scholar
  12. 12.
    Fu LXM, Schulze W, Wallukat G, Hjalmarson Å, Hoebeke J: A synthetic peptide corresponding to the second extracellular loop of the human M2 acetylcholine muscarinic receptor induces pharmacological and morphological changes in cardiomyocytes by active immunization after 6 months in rabbits. Clin Immunol Immunolpathol 78: 203–207, 1996CrossRefGoogle Scholar
  13. 13.
    Pappano AJ, Mubagwa K: Muscarinic agonist-induced actions on potassium and calcium channels in atrial myocytes: Differential desensitization. Eur Heart J 12 (supplement F): 70–75, 1991PubMedGoogle Scholar
  14. 14.
    Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ: Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391: 85–100, 1981PubMedCrossRefGoogle Scholar
  15. 15.
    Hartzell HC, Simmons MA: Comparison of effects of acetylcholine on calcium and potassium currents in frog atrium and ventricle. J Physiol 389: 411–422, 1987PubMedGoogle Scholar
  16. 16.
    Gocayne JD, Robinson DA, Fitzgerald MG, Chung FZ, Kerlavage AR, Lenter KU, Lai J, Wang CD, Fraser CM, Venter JC: Primary structure of rat cardiac β-adrenergic and muscarinic cholinergic receptors obtained by automated DNA sequence analysis: further evidence for a multiple gene family. Proc Natl Acad Sci USA 84: 8296–8300, 1987PubMedCrossRefGoogle Scholar
  17. 17.
    Peralta EG, Winslow JW, Peterson GL, Smith DH, Ashkenazi A, Ramachandrar Schimerlik MI, Capon DJ: Primary structure and biochemical properties of muscarinic receptor. Science 230: 600–605, 1987CrossRefGoogle Scholar
  18. 18.
    Hino N, Ochi R: Effect of acetylcholine on membrane currents in guinea-pig papillary muscle. J Physiol 307: 183–197, 1980PubMedGoogle Scholar
  19. 19.
    Loffelholz K, Pappano AJ: The parasympathetic neuroeffector junction of the heart. Pharmacol Rev 37: 1–24, 1985PubMedGoogle Scholar
  20. 20.
    McMom SO, Harrison SM, Zang WJ, Yu XJ, Boyett MR: A direct negative inotropic effect of acetylcholine on rat ventricular myocytes. Am J Physiol 265: H1393–1400, 1993Google Scholar
  21. 21.
    Siegel RE, Fischbach GD: Muscarinic receptors and responses in intact embryonic chick atrial and ventricular heart cells. Develop Biol 101: 346–356, 1984PubMedCrossRefGoogle Scholar
  22. 22.
    Fields JZ, Roeske WR, Morkin E, Yamamura HI: Cardiac muscarinic cholinergic receptors. J Biol Chem 253: 3251–3258, 1986Google Scholar
  23. 23.
    Wei JW, Sulakhe PV: Regional and subcellular distribution of myocardial muscarinic cholinergic receptors. Eur J Pharmacol 52: 235–238, 1978PubMedCrossRefGoogle Scholar
  24. 24.
    Carmeliet E, Mubagwa K: Characterization of the acetylcholine-induced potassium current in rabbit cardiac Purkinje fibers. J Physiol 371: 219–237, 1986PubMedGoogle Scholar
  25. 25.
    Mubagwa K, Carmeliet E: Effects of acetylcholine on electrophysiological properties of rabbit cardiac Purkinje fibers. Circ Res 53: 740–751, 1983PubMedGoogle Scholar
  26. 26.
    Ter Eick R, Nawrath H, McDonald TF, Trautwein W: On the mechanism of the negative inotropic effect of acetylcholine. Pflugers Arch 361: 207–213, 1976PubMedCrossRefGoogle Scholar
  27. 27.
    Biegon RL, Pappano AJ: Dual mechanism for inhibition of calcium-dependent action potentials by acetylcholine. Circ Res 46: 353–362, 1980PubMedGoogle Scholar
  28. 28.
    Fischmeister R, Hartzell HC: Mechanism of action of acetylcholine on calcium current in single cell from frog ventricle. J Physiol 376: 183–202, 1986PubMedGoogle Scholar
  29. 29.
    Pfaffinger PJ, Martin JM, Hunter DD, Nathanson NM, Hille B: GTP-binding proteins couple cardiac muscarinic receptors to a K channel. Nature 317: 536–538, 1985PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Rongrui Zhao
    • 1
  • Wenze Wang
    • 1
  • Bowei Wu
    • 1
  • Johan Hoebeke
    • 2
  • Åke Hjalmarson
    • 3
  • Michael L. X. Fu
    • 3
  1. 1.Department of PhysiologyShanxi Medical CollegeTaiyuanChina
  2. 2.Laboratoire d’Enzymologie et de Chimie des ProteinesURA 1334 CNRSToursFrance
  3. 3.Wallenberg Laboratory, Sahlgren’s HospitalUniversity of GoteborgGoteborgSweden

Personalised recommendations