Skip to main content

Role of vascular adrenergic mechanisms in the haemodynamic and PGI2 stimulating effects of angiotensin in diabetic dogs

  • Chapter
Biochemical Regulation of Myocardium

Abstract

In aware of the well-known altered vascular responsiveness in the diabetic vasculature, this study aimed to compare the haemodynamic and PGI2 releasing effects of angiotensin in metabolically healthy (12) and alloxan-(560 umol/kg) diabetic (12) dogs as well as to analyze the role of vascular adrenoceptors in this. In vivo the effect of intracoronarially administered angiotensin (63–125–250–500–1000 pmol/kg/min) on coronary blood flow, mean arterial blood pressure, myocardial contractile force and heart rate was investigated without and with pretreatment of 2 umol/kg phentolamine. In vitro PGI2 release by isolated coronary rings was induced by 50 nmol/1 angiotensin before and after pretreatment with 5 umol/1 phentolamine and measured by radioimmunoassay. Angiotensin enhances dose-dependently both the mean arterial blood pressure and coronary blood flow, while it provokes a considerable (p < 0.05) increase of PGI2 formation by isolated coronary arterial rings. These alterations could be prevented by phentolamine administration both in vivo and in vitro, while this drug did not affect the angiotensin-induced enhancement of diabetic coronary blood flow. On the other hand the increase of blood pressure by angiotensin was found to be more (p < 0.05) expressed in diabetes and it could be further potentiated by phentolamine. PGI2 synthesis by isolated diabetic coronary rings could not be modified either by angiotensin alone or in combination with phentolamine. On the basis of above data, the lack of stimulated vascular PGI2 formation mediated by alpha-adrenergic mechanisms is supposed to causatively contribute to the diminished sensitivity of diabetic coronary arteries to vasodilation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Knowles HC: The natural history of coronary heart disease and diabetes mellitus. In: RC Scott (ed.) Clinical cardiology and diabetes. Fundamental considerations in cardiology and diabetes vol. 1. Mount Kisco: Futura Publishing Comp 1981, 29–39

    Google Scholar 

  2. Kannel WB: Role of diabetes in cardiac disease: conclusions from population studies. In: S. Zoneraich (ed.) Diabetes and the heart. Springfield: Charles C Thomas 1978, 97–112

    Google Scholar 

  3. Brownlee M, Cahill GF: Diabetes control and vascular complications. Atheroscl Rev 1979, 4: 29–70

    CAS  Google Scholar 

  4. Marble A: Late complications in diabetes. A continuing challenge. Diabetologia 12: 193–199, 1976

    Article  PubMed  CAS  Google Scholar 

  5. Skyler JS, Cahill GF: Forward diabetes mellitus progress and directions. Am J Med 70: 101–104, 1980

    Article  Google Scholar 

  6. Factor SM, Okun EM, Minase I: Capillary microaneurysms in human diabetic heart. N Engl J Med 70: 101–104, 1980

    Google Scholar 

  7. Koltai MZ, Wagner M, Pogatsa G: Altered hyperemic responses of the coronary arterial bed in alloxan-diabetes. Experientia 39: 738–740, 1983

    Article  PubMed  CAS  Google Scholar 

  8. Jackson CV, Carrier GO: Supersensitivity of isolated mesenteric arteries to noradrenaline in the long therm experimental diabetic rat. J Auton Pharmacol 1: 399–405, 1981

    Article  PubMed  CAS  Google Scholar 

  9. Mueller SM, Mueller RM, Ertel PJ: Sympathethic and vascular dysfunction in early experimental juvenile diabetes mellitus. Am J Physiol 243:H139–144, 1982

    PubMed  CAS  Google Scholar 

  10. Roth DM, Reibel DK, Lefer AM: Vascular responsiveness and eicosanoids production in diabetic rats. Diabetologia 24: 372–376,1983

    Article  PubMed  CAS  Google Scholar 

  11. Sterin-Borda L, Borda ES, Gimeno M, Lazzari MA, Del Castillo E, Gimeno AL: Contractile activity and prostacyclin generation in isolated coronary arteries from diabetic dogs. Diabetologia 22: 56–59, 1982

    Article  PubMed  CAS  Google Scholar 

  12. Sullivan S, Sparks HV: Diminished contractile response of aortas from diabetic rabbits. Am J Physiol 236: H301–306, 1979

    PubMed  CAS  Google Scholar 

  13. Christlieb AR: Renin, angiotensin and norepinephrine in alloxan-diabetes. Diabetes 23: 962–970, 1974

    PubMed  CAS  Google Scholar 

  14. Koltai MZ, Rösen P, Hadházy P, Ballagi-Pordány G, Köszeghy A, Pogátsa G: Relationship between vescular adrenergic receptors and prostaglandin biosynthesis in canine diabetic coronary arteries. Diabetologia31: 681–687, 1988

    Google Scholar 

  15. McLeod KM, McNeill JH: The influence of chronic experimental diabetes on contractile responses of rat isolated blood. Can J Physiol Pharmacol 63: 552–577, 1985

    Google Scholar 

  16. Starke K: Regulation of noradrenaline release by presynaptic receptor systems. Rev Physiol Biochem Pharmacol 77: 1–124, 1977

    Article  PubMed  CAS  Google Scholar 

  17. Westfall TC: Local regulation of adrenergic neurotransmission. Physiol Rev 57: 659–728, 1977

    PubMed  CAS  Google Scholar 

  18. Zimmerman BG: Actions of angiotensin on adrenergic nerve endings. Fed Proc 37: 199–202, 1978

    PubMed  CAS  Google Scholar 

  19. Conard V, Franckson JRM, Bastenie PM, Kestens J, Kovacs L: Etude critique du triangle d’hyperglycémie intraveineux chez l’homme et determination d’un coefficient d’assimilation glucidique. Arch Int Pharmacodyn Ther 93: 277–292, 1953

    PubMed  CAS  Google Scholar 

  20. Trinder P: Determination of blood glucose using an oxydase-peroxydase system with a non-carcinogenic chromogen. J Clin Pathol 13: 158–161, 1969

    Article  Google Scholar 

  21. Fawcett JK, Scott JE: A rapid and precise method for the determination of urea. J Clin Pathol 13: 156–159, 1960

    Article  PubMed  CAS  Google Scholar 

  22. Neuweiler W: Quantitative Bestimmung der Acetonkörper im Blut mittels des Stufenphotometers. Klin Wochenschr 12: 869–890, 1933

    Article  CAS  Google Scholar 

  23. Scheuer J, Penpargkul S In: JT Willerson and CA Sanders (eds). Clinical Cardiology. Grüne and Stratton, New York 1977, p. 50

    Google Scholar 

  24. Boeynaems JM, Galand N, Ketelbant P: Prostacyclin production by the deendothelialized rabbit aorta. Klin Invest 76: 7–14, 1985

    Article  CAS  Google Scholar 

  25. Jeremy JY, Mikhailidis DP, Dandona P: Adrenergic modulation of vascular prostacyclin (PGI2) secretion. Eur J Pharmacol 114: 33–40,1985

    Article  PubMed  CAS  Google Scholar 

  26. Rosen P, Rosen R, Hohl C, Reinauer H, Klaus W: Reduced transcoronary exchange and prostaglandin synthesis in the diabetic rat heart. Am J Physiol 247: H372–376, 1984

    Google Scholar 

  27. Christlieb AR: Diabetes and hypertensive vascular disease: mechanisms and treatment. Am J Cardiol 32: 592–606, 1973

    Article  PubMed  CAS  Google Scholar 

  28. Ilstrup KM, Kaene WF, Michels LD: Intravascular and extravascular volumes in the diabetic rat. Life Sci 29: 717–721, 1981

    Article  PubMed  CAS  Google Scholar 

  29. Regan TJ, Ettinger PO, Kahn MI: Altered myocardial function and metabolism in chronic diabetes mellitus without ischaemia in dogs. Circ Res 35: 222–37, 1974

    CAS  Google Scholar 

  30. Vadlamudi R, McNeill JH: Cardiac function in normal and diabetic rats. Proc West Pharmacol Soc 23: 29–31, 1980

    PubMed  CAS  Google Scholar 

  31. Savarese JJ, Berkowitz BA: Beta-adrenergic receptor decrease in diabetic rat hearts. Life Sci 25: 2075–2078, 1979

    Article  PubMed  CAS  Google Scholar 

  32. Ingebretsen CG, Lindel DM, Ingebretsen WR: Alloxan-diabetes decreases rat heart beta-receptor number. The pharmacologist 23: 226–229,1981

    Google Scholar 

  33. Christlieb AR, Janka H, Kraus B, Gleason RE, Icasas-Cabral EA, Aieilo LM, Cabrai BV, Solano A: Vascular reactivity to angiotensin II and to norepinephrine in diabetic subjects. Diabetes 25: 268–274, 1976

    Article  PubMed  CAS  Google Scholar 

  34. Brody MJ, Dixon RL: Vascular reactivity in experimental diabetes mellitus. Cire Res 14: 494–501, 1964

    CAS  Google Scholar 

  35. Hill MA, Larkins RG: Altered microvascular reactivity in strepto-zotocin-induced diabetes in rats. Am J Physiol 257: H1438–H1445, 1989

    PubMed  CAS  Google Scholar 

  36. Jackson CV, Carrier GO: Influence of short-term experimental diabetes on blood pressure and heart rate in response to norepinephrine and angiotensin II in the conscious rat. J Cardiovasc Pharmacol 5: 260–265, 1983

    Article  PubMed  CAS  Google Scholar 

  37. Hebden RA, Bennett T, Gardiner SM: Abnormal blood pressure recovery during ganglion blockade in diabetic rats. Am J Physiol 252: R102–R108, 1987

    PubMed  CAS  Google Scholar 

  38. Nishik SD, Davis D, Youmans WB: Cardioaccelerator action of angiotensin II. Am J Physiol 202: 237–240, 1962

    Google Scholar 

  39. Ziogas J, Story DF, Rand MJ: Effects of locally generated All on noradrenergic transmission in guinea pig isolated atria. Eur J Pharmacol 106: 11–18,1985

    Article  Google Scholar 

  40. Malik KU, Nasjletti A: Facilitation of adrenergic transmitter by locally generated All in rat mesenteric arteries. Circ Res 38: 26–30, 1975

    Google Scholar 

  41. Yasuda G, Shionori H, Kubo T, Misu Y: Presynaptic angiotensin II receptors and captopril-induced adrenergic transmission failure probably not via converting enzyme inhibition in guinea pig pulmonary arteries. J Hypertension 5: S39–S45, 1987

    Article  CAS  Google Scholar 

  42. Ganten D, Sheiling P, VecSci P, Ganten U: Iso-renin of extrarenal origin the tissue angiotensinogenase systems. Am J Med 60: 760–772, 1976

    Article  PubMed  CAS  Google Scholar 

  43. Rosenthal JH, Pfeifle B, Michailov ML, Pschorr J, Jacob ICM, Dahlheim H: Investigations of components of the renin-angiotensin system in rat vascular tissue. Hypertension 6: 383–390, 1984

    PubMed  CAS  Google Scholar 

  44. Dzau VJ: Vascular renin-angiotensin, a possible autocrine or paracrine system in control. J Cardiovasc Pharmacol 6: S377–S382, 1984

    Article  PubMed  Google Scholar 

  45. Xiang J, Linz W, Becker H, Ganten D, Lang RE, Schoelkens B, Unger T: Effects of converting enzyme inhibitors ramipril and enlapril on peptide action and sympathetic neurotransmission in the isolated heart. Eur J Pharmacol 113: 215–223, 1984

    Article  Google Scholar 

  46. Gimbrone MA, Alexander RW: Angiotensin II stimulation of prostaglandin production in cultured human vascular endothelium. Science 189:219–220, 1975

    Article  PubMed  CAS  Google Scholar 

  47. Gruetter CA, Ryan ET, Lemke SM, Bailly DA, Fox MK, Shoepp DD: Endothelium dependent modulation of angiotensin II induced contraction in blood vessels. Eur J Pharmacol 146: 85–95, 1988

    Article  PubMed  CAS  Google Scholar 

  48. Koch-Weser J: Myocardial actions of angiotensin. Circ Res 14: 337–344, 1964

    PubMed  CAS  Google Scholar 

  49. Blumberg A, Ackerly JA, Peach MJ: Differentiation of neurogenic and myocardial angiotensin II receptors in isolated rabbit atria. Circ Res 36: 719–726, 1976

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Koltai, M.Z., Pósa, I., Kocsis, E., Rösen, P., Pogátsa, G. (1996). Role of vascular adrenergic mechanisms in the haemodynamic and PGI2 stimulating effects of angiotensin in diabetic dogs. In: Vetter, R., Krause, EG. (eds) Biochemical Regulation of Myocardium. Developments in Molecular and Cellular Biochemistry, vol 19. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1289-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1289-5_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8551-9

  • Online ISBN: 978-1-4613-1289-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics