Skip to main content

Detection of minimal residual disease in all: biology, methods, and applications

  • Chapter
Book cover Molecular Genetics and Therapy of Leukemia

Part of the book series: Cancer Treatment and Research ((CTAR,volume 84))

Abstract

Progress in the treatment of childhood acute lymphoblastic leukemia (ALL) has been dramatic during the last three decades [1]. Unfortunately, although the disease is initially responsive to combination chemotherapy in the vast majority of cases — i.e., complete remissions are attained — contemporary therapies result in a cure in only about 60%–70% of children [2]. The complete remission rate for adults (above the age of 18) is slightly lower, but the outcome is worse due to a higher relapse rate, often occurring early during treatment. One criterion for complete remission is that the bone marrow contain fewer than 5% blasts. However, a patient in remission may harbor up to 1010 malignant cells in the bone marrow that must be eradicated or controlled by therapy to achieve the desired outcome of cure [3,4]. The inability to assess this potentially large amount of leukemia in a patient who is in ‘remission’ has necessitated empiric strategies for deciding the duration and intensity of therapy necessary to control the disease. Thus, strategies to identify the tumor burden during remission, often termed minimal residual disease or MRD, have been applied in an effort to improve our understanding of the nature of the disease and its response to therapy during this period.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rivera GK, Pinkel D, Simone JV, Hancock MC, Crist WM (1993). Treatment of acute lymphoblastic leukemia. 30 years’ experience at Saint Jude Children’s Research Hospital. N Engl J Med 329:1289–1295.

    Article  PubMed  CAS  Google Scholar 

  2. Smith MS, Arthur D, Camitla B, Carroll AJ, Crist W, Gaynon P, Gelber R, Hereema N, Korn EL, Link M, Murphy S, Pui C-H, Pullen J, Reaman G, Sallan SE, Sather H, Shuster J, Simon R, Trigg M, Tubergen D, Uckun F, Ungerleider R (1996). Uniform approach to risk-classification and treatment assignment for children with acute lymphoblastic leukemia (ALL). J Clin Oncol 14:18–24.

    PubMed  CAS  Google Scholar 

  3. Ryan DH, Van Dongen JJM (1988). Detection of residual disease in acute leukemic using immunological markers. In Bennett JM, Foon KA (eds), Immunologic Approaches to the Classification and Management of Lymphomas and Leukemias. Kluwer Academic Publishers: Norwell, MA, pp. 173–207.

    Chapter  Google Scholar 

  4. Pratt WB, Ruddon RW, Ensminger WD, Maybaum J (1994). Determinants of Drug Responsiveness: The Anticancer Drugs. Oxford University Press: New York, pp. 26–49.

    Google Scholar 

  5. Hagemeijer A, Adriaansen HJ, Bartram CR (1986). New possibilities for cytogenetic analysis of leukemic cells. In Hagenbeek A (ed), Minimal Residual Disease in Acute Leukemia. M Nijhoff: Dordrecht, pp. 1–11.

    Google Scholar 

  6. Hart JS, Trujillo JM, Freireich EJ, George SL, Frei E III (1971). Cytogenetic studies and their clinical correlates in adults with acute leukemia. Ann Intern Med 75:353–360.

    PubMed  CAS  Google Scholar 

  7. Testa JR, Mintz U, Rowley JD, Vardiman JW, Golomb HM (1979). Evolution of karyotypes in acute nonlymphocytic leukemia. Cancer Res 39:3619–3627.

    PubMed  CAS  Google Scholar 

  8. Freireich EJ, Cork A, Stass SA, McCredie KB, Keating MJ, Estey EH, Kantarjian HM, Trujillo JM (1992). Cytogenetics for detection of minimal residual disease in acute myeloblas-tic leukemia. Leukemia 6:500–506.

    PubMed  CAS  Google Scholar 

  9. Gray JW, Kuo WL, Liang J, Pinkel D, Van den Engh G, Trask B, Tkachuk D, Waldman F, Westbrook C (1990). Analytical approaches to detection and characterization of disease-linked chromosome aberrations. Bone Marrow Transplant 6:14–19.

    PubMed  Google Scholar 

  10. Campana D, Coustan-Smith E, Behm FG (1991). The definition of remission in acute leukemia with immunologic techniques. Bone Marrow Transplant 8:429–437.

    PubMed  CAS  Google Scholar 

  11. Hurwitz CA, Gore SD, Stone KD, Civin CI (1992). Flow cytometric detection of rare normal human marrow cells with immunophenotypes characteristic of acute lymphoblastic leukemia cells. Leukemia 6:233–239.

    PubMed  CAS  Google Scholar 

  12. Re GG, Estrov Z, Antoun GR, Felix EA, Pinkel DP, Zipf TF (1991). Differentiation in B-precursor acute lymphoblastic leukemia cell populations with CD34-positive subpopulations. Blood 78:575–580.

    PubMed  CAS  Google Scholar 

  13. Campana D, Yokota S, Coustan-Smith E, Hansen-Hagge TE, Janossy G, Bartram CR (1990). The detection of residual acute lymphoblastic leukemia cells with immunologic methods and polymerase chain reaction: a comparative study. Leukemia 4:609–614.

    PubMed  CAS  Google Scholar 

  14. Estrov Z, Ouspenskaia MV, Felix EA, McClain KL, Lee M-S, Harris D, Pinkel DP, Zipf TF (1994). Persistence of self-renewing leukemia cell progenitors during remission in children with B-precursor acute lymphoblastic leukemia. Leukemia 8:46–52.

    PubMed  CAS  Google Scholar 

  15. Pui CH, Crist WM, Look AT (1990). Biology and clinical significance of cytogenetic abnormalities in childhood acute lymphoblastic leukemia. Blood 76:1449–1463.

    PubMed  CAS  Google Scholar 

  16. VanDongen JJM, Wolvers-Tettero ILM (1991). Analysis of immunoglobulin and T cell receptor genes. Part II: Possibilities and limitations in the diagnosis and management of lymphorproliferative diseases and related disorders. Clin Chim Acta 198:93–174.

    Article  CAS  Google Scholar 

  17. Steward CG, Goulden NJ, Katz F, Baines D, Martin PG, Langlards K, Potter MN, Chessells JM, Oakhill A (1994). A polymerase chain reaction study of the stability of Ig heavy-chain and T-cell receptor δ gene rearrangement between presentation and relapse of childhood B-lineage acute lymphoblastic leukemia. Blood 83:1355–1362.

    PubMed  CAS  Google Scholar 

  18. D’Auriol L, Macintyre E, Galibert F, Sigaux F (1989). In vitro amplification of T cell gamma gene rearrangements: a new tool for the assessment of minimal residual disease in acute lymphoblastic leukemias. Leukemia 3:155–158.

    PubMed  Google Scholar 

  19. Brisco MJ, Tan LW, Orsborn AM, Morley AA (1990). Development of a highly sensitive assay based on the polymerase chain reaction for rare B-lymphocyte clones in a polyclonal population. Br J Haematol 75:163–167.

    Article  PubMed  CAS  Google Scholar 

  20. Jonsson OG, Kitchens RL, Scott FC, Smith RG (1990). Detection of minimal residual disease in acute lymphoblastic leukemia using immunoglobulin hypervariable region specific oligonucleotide probes. Blood 76:2072–2079.

    PubMed  CAS  Google Scholar 

  21. Nizet Y, Martiat P, Vaerman JL, Philippe M, Wildmann C, Staelens JP, Cornu G, Ferrant A, Michaux JL, Sokal G (1991). Follow-up of residual disease (MRD) in B lineage acute leukemias using a simplified PCR strategy; evolution of MRD rather than its detection is correlated with clinical outcome. Br J Haematol 79:205–210.

    Article  PubMed  CAS  Google Scholar 

  22. Yamada M, Wasserman R, Lange B, Reichard BA, Womer RB, Rovera G (1990). Minimal residual disease in childhood B-lineage lymphoblastic leukemia. N Engl J Med 323:448–455.

    Article  PubMed  CAS  Google Scholar 

  23. Macintyre E, D’Auriol L, Amesland F, Loiseau P, Chen Z, Boumsell L, Galibert F, Sigaux F (1989). Analysis of junctional diversity in the preferential Vδ-Jδ1 rearrangement of fresh T-acute lymphoblastic leukemia cells by in vitro gene amplification and direct sequencing. Blood 74:2053–2061.

    PubMed  CAS  Google Scholar 

  24. Beishuizen A, Hahlen K, Van Wering ER, Van Dongen JJM (1991). Detection of minimal residual disease in childhood leukemia with the polymerase chain reaction. N Engl J Med 324:772–773.

    Article  Google Scholar 

  25. Wasserman R, Yamada M, Ito Y, Finger LR, Reichard BA, Shane S, Lange B, Rovera G (1992). VH gene rearrangement events can modify the immunoglobulin heavy chain during progression of B-lineage acute lymphoblastic leukemia. Blood 79:223–228.

    PubMed  CAS  Google Scholar 

  26. Tycko B, Ritz J, Sallan S, Sklar J (1992). Changing antigen receptor gene rearrangements in a case of early pre-B cell leukemia: evidence for a tumor progenitor cell with stem cell features and implications for monitoring residual disease. Blood 79:481–488.

    PubMed  CAS  Google Scholar 

  27. Kiyoi H, Naoe T, Horibe K, Ohno R (1992). Characterization of the immunoglobulin heavy chain complementarity determining region (CDR)-III sequences from human B cell precursor acute lymphoblastic leukemia cells. J Clin Invest 89:739–746.

    Article  PubMed  CAS  Google Scholar 

  28. Beishuizen A, Verhoevan MAJ, Van Wering ER, Hahlen K, Hooijkaas H, Van Dongen JJM (1994). Analysis of Ig and T-cell receptor genes in 40 childhood acute lymphoblastic leukemias at diagnosis and subsequent relapse; implications for the detection of minimal residual disease by polymerase chain reaction analysis. Blood 83:2238–2247.

    PubMed  CAS  Google Scholar 

  29. Ouspenskaia MV, Estrov Z, Felix EA, Harris D, Lee M-S, McClain K, Pinkel DP, Zipf TF (1993). Clonal evolution of the rearranged immunoglobulin heavy chain (IgH) gene during remission in acute lymphocytic leukemia (ALL) of childhood: detection by a clonogenic assay and polymerase chain reaction (PCR). Blood 82:189 (abstract).

    Google Scholar 

  30. Billadeau D, Blackstadt M, Greipp P, Kyle RA, Oken MM, Kay N, Van Ness B (1991). Analysis of B-lymphoid malignancies using allele-specific polymerase chain reaction: a technique for sequential quantitation of residual disease. Blood 78:3021–3029.

    PubMed  CAS  Google Scholar 

  31. Cavé H, Guidai P, Rohrlich P, Delfau MH, Broyart A, Lescoeur B, Rahimy C, Fenneteau O, Monplaisir N, D’Auriol L, Elion J, Vilmer E, Grandchamp B (1994). Prospective monitoring and quantitation of residual blasts in childhood acute lymphoblastic leukemia by polymerase chain reaction study of δ and γ T-cell receptor genes. Blood 83:1892–1902.

    PubMed  Google Scholar 

  32. Sykes PJ, Neoh SH, Brisco MJ, Hughes E, Condon J, Morley AA (1992). Quantitation of targets for PCR by use of limiting dilution. Biotechniques 13:444–449.

    PubMed  CAS  Google Scholar 

  33. Taswell C (1981). Limiting dilution assays for the determination of immunocompetent cell frequencies. I. Data Analysis. J Immunol 126:1614–1619.

    PubMed  CAS  Google Scholar 

  34. Miller RG, Teh H-S, Phillips RA (1978). Quantitative studies of the activation of cytotoxic lymphocytic precursor cells. Immunol Rev 35:38–58.

    Article  Google Scholar 

  35. Ouspenskaia, MV, Johnston, DA, Roberts WM, Estrov Z, Zipf TF (1995). Accurate quantitation of residual B-precursor acute lymphoblastic leukemia by limiting dilution and a PCR-based detection system: a description of the method and the principles involved. Leukemia 9:321–328.

    PubMed  CAS  Google Scholar 

  36. Hardisty RM, Kay HEM (1977). Treatment of acute lymphoblastic leukemia: effect of variation in length of treatment on duration of remission. Br Med J 2:495–497.

    Article  Google Scholar 

  37. Bartram CR (1993). Detection of minimal residual leukemia by the polymerase chain reaction: potential implications for therapy. Clin Chim Acta 217:75–83.

    Article  PubMed  CAS  Google Scholar 

  38. Nizet Y, Van Daele S, Lewalle P, Vaerman JL, Philippe M, Vermylen C, Cornu G, Ferrant A, Michaux JL, Martiat P (1993). Long-term follow-up of residual disease in acute lymphoblastic leukemia patients in complete remission using clonogenic IgH probes and the polymerase chain reaction. Blood 82:1618–1625.

    PubMed  CAS  Google Scholar 

  39. Roberts WM, Estrov Z, Kitchingman GR, Zipf TF (1996). The clinical significance of residual disease in childhood acute lymphoblatic leukemias detected by polymerase chain reaction amplification of antigen-receptor gene sequences. Leukemia Lymphoma 20:181–197.

    Article  PubMed  CAS  Google Scholar 

  40. Brisco MJ, Condon J, Hughes E, Neoh S-H, Sykes PJ, Seshadri R, Toogood I, Waters K, Tauro G, Ekert H, Morley AA (1994). Outcome prediction in childhood acute lymphoblastic leukemia by molecular quantification of residual disease at the end of induction. Lancet 343:196–200.

    Article  PubMed  CAS  Google Scholar 

  41. Wasserman R, Galili N, Ito Y, Silber JH, Reichard BA, Shane S, Womer RB, Lange B, Rovera G (1992). Residual disease at the end of the induction therapy as a predictor of relapse during childhood B-lineage acute lymphoblastic leukemia. J Clin Oncol 10:1879–1888.

    PubMed  CAS  Google Scholar 

  42. Brisco MJ, Condon J, Hughes E, Neoh S-H, Nicholson I, Sykes PJ, Tauro G, Ekert H, Waters K, Toogood I, Seshadri R, Morley AA, and the Australian and New Zealand Children’s Cancer Study Group (1993). Prognostic significance of detection of monoclonality in remission marrow in acute lymphoblastic leukemia in childhood. Leukemia 7:1514–1520.

    PubMed  CAS  Google Scholar 

  43. Biondi A, Yokota S, Hansen-Hagge TE, Rossi V, Giudici G, Maglia O, Basso G, Tell C, Masera G, Bartram CR (1992). Minimal residual disease in childhood acute lymphoblastic leukemia: analysis of patients in continuous complete remission or with consecutive relapse. Leukemia 6:282–288.

    PubMed  CAS  Google Scholar 

  44. Kitchingman GR (1994). Residual disease detection in multiple follow-up samples in children with acute lymphoblastic leukemia. Leukemia 8:395–401.

    PubMed  CAS  Google Scholar 

  45. Cole-Sinclair M, Foroni L, Wright F, Mehta A, Prentice HG, Hoffbrand AV (1993). Minimal residual disease in acute lymphoblastic leukemia — PCR analysis of immunoglobulin gene rearrangements. Leukemia Lymphoma 11:49–58.

    Article  PubMed  Google Scholar 

  46. Yokota S, Hansen-Hagge TE, Ludwig WD, Reiter A, Raghavachar A, Kleihauer E, Bartram CR (1991). Use of polymerase chain reactions to monitor minimal residual disease in acute lymphoblastic leukemia patients. Blood 77:331–339.

    PubMed  CAS  Google Scholar 

  47. Deane M, Hoffbrand AV (1993). Detection of minimal residual disease in ALL. In Freireich EJ, Kantarjian H (eds), Leukemia: Advances in Research and Treatment. Kluwer Academic Publishers: Norwell, MA, pp. 135–170.

    Chapter  Google Scholar 

  48. Potter MN, Steward CG, Oakhill A (1993). The significance of detection of minimal residual disease in childhood acute lymphoblastic leukemia. Br J Haematol 83:412–418.

    Article  PubMed  CAS  Google Scholar 

  49. Estrov Z, Ouspenskaia MV, Lee M-S, Felix EA, Harris D, Pinkel DP, Johnston D, McClain K, Zipf TF (1993). Comparison of the detection of residual ALL cells during remission by a combination of a clonogenic assay and PCR with detection by PCR alone: a prospective study. Blood 82:209 (abstract).

    Google Scholar 

  50. Ito Y, Wasserman R, Galili N, Reichard BA, Shane S, Lange B, Rovera G (1993). Molecular residual disease status at the end of chemotherapy fails to predict subsequent relapse in children with B-lineage acute lymphoblastic leukemia. J Clin Oncol 11:546–553.

    PubMed  CAS  Google Scholar 

  51. Neale GAM, Menarguez J, Kitchingman GR, Fitzgerald TJ, Koelher M, Mirro J Jr, Goorha RM (1991). Detection of minimal residual disease in T-cell acute lymphoblastic leukemia using polymerase chain reaction predicts impending relapse. Blood 78:739–747.

    PubMed  CAS  Google Scholar 

  52. Neale GAM, Pui C-H, Mahmoud HH, Mirro J Jr, Crist WM, Rivera GK, Goorha RM (1994). Molecular evidence for minimal residual bone marrow disease in children with ‘isolated’ extra-medullary relapse of T-cell acute lymphoblastic leukemia. Leukemia 8:768–775.

    PubMed  CAS  Google Scholar 

  53. Goulden N, Langlands K, Steward C, Katz F, Potter M, Chessells J, Oakhill A (1994). PCR assessment of bone marrow status in ‘isolated’ extramedullary relapse of childhood B-precur-sor acute lymphoblastic leukemia. Br J Haematol 87:282–285.

    Article  PubMed  CAS  Google Scholar 

  54. Rogers PCJ, Coccia P, Siegel S, Bleyer WA, Lukens JN, Sather H, Hammond D (1984). Yield of unpredicted bone-marrow relapse diagnosed by routine marrow aspiration in children with acute lymphoblastic leukemia. A report from the Children’s Cancer Study Group. Lancet i:1320–1322.

    Article  Google Scholar 

  55. Komp DM, Fischer DB, Sabio H, Mcintosh S (1983). Frequency of bone marrow aspirates to monitor acute lymphoblastic leukemia in childhood. J Pediatr 102:395–397.

    Article  PubMed  CAS  Google Scholar 

  56. Bennett JM (1992). Detection of relapse in acute leukemia: Should we discontinue routine bone marrow surveillance? Leukemia 6:1099–1100.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers, Boston

About this chapter

Cite this chapter

Roberts, W.M., Estrov, Z., Kitchingman, G.R., Zipf, T.F. (1996). Detection of minimal residual disease in all: biology, methods, and applications. In: Freireich, E.J., Kantarjian, H. (eds) Molecular Genetics and Therapy of Leukemia. Cancer Treatment and Research, vol 84. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1261-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1261-1_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8537-3

  • Online ISBN: 978-1-4613-1261-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics