Effects of postoperative intraperitoneal chemotherapy on peritoneal wound healing and adhesion formation

  • Pierre Jacquet
  • Paul H. Sugarbaker
Part of the Cancer Treatment and Research book series (CTAR, volume 82)


Cancer arising in the abdomen or pelvis may spread to peritoneal surfaces in the absence of lymphatic or hematogenous metastases. This is a localized disease process that is generally thought to have a universally lethal outcome. To treat isolated cancer spread on peritoneal surfaces, extensive surgery and intraperitoneal chemotherapy have been combined. This cytoreductive approach has been described as a potential successful tool in the management of a variety of malignancies that disseminate primarily in the abdomen and pelvis [1]. The surgical procedures for complete cytoreduction vary with the extent and anatomic location of the carcinomatosis or Sarcomatosis but always include stripping away parietal peritoneal surfaces and resection of visceral peritoneal surfaces involved by tumor [2]. Peritonectomy procedures result in an extensive absence of serosal coverage of the abdomen and pelvis. This trauma causes serosal damage, which initiates an inflammatory response and a wound healing process that can lead to fibrin deposition and intraabdominal adhesion formation. The intent of this chapter is to provide an overview of wound healing and adhesion formation mechanisms in the peritoneal cavity. The effect of postoperative intraperitoneal chemotherapy on these processes will be then discussed.


Adhesion Formation Intraperitoneal Chemotherapy Postoperative Adhesion Malignant Peritoneal Mesothelioma Abdominal Adhesion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sugarbaker PH. Intraperitoneal chemotherapy for treatment and prevention of peritoneal carcinomatosis and Sarcomatosis. Dis Colon Rectum 1994;37(Suppl):155–122.CrossRefGoogle Scholar
  2. 2.
    Sugarbaker PH. Peritonectomy procedures. Ann Surg 1995;221:29–42.PubMedCrossRefGoogle Scholar
  3. 3.
    Ellis H. Wound repair. Reaction of the peritoneum to injury. Ann R Coll Surg Engl 1978;60:219–221.PubMedGoogle Scholar
  4. 4.
    Raftery AT. Regeneration of parietal and visceral peritoneum. A light microscopical study. Br J Surg 1973;60:293–299.PubMedCrossRefGoogle Scholar
  5. 5.
    Myrhe-Jensen O, Larsen SB, Astrup T. Fibrinolytic activity in serosal and synovial menbranes: Rats, guinea pigs, and rabbits. Arch Pathol 1969;88:623–630.PubMedGoogle Scholar
  6. 6.
    Ryan GB, Grobety J, Majno G. Postoperative peritoneal adhesions: A study of the mechanisms. Am J Pathol 1971;65:117–148.PubMedGoogle Scholar
  7. 7.
    Ryan GB, Grobety J, Majno G. Mesothelial injury and recovery. Am J Pathol 1973;71: 93–112.PubMedGoogle Scholar
  8. 8.
    Watters WB, Buck RC. Scanning electron microscopy of mesothelial regeneration in the rat. Lab Invest 1972;26:604–609.PubMedGoogle Scholar
  9. 9.
    Milligan DW, Raftery AT. Observations on the pathogenesis of peritoneal adhesions: A light and electron microscopical study. Br J Surg 1974;61:274.PubMedCrossRefGoogle Scholar
  10. 10.
    Jackson BB. Observations on intraperitoneal adhesions, an experimental study. Surgery 1958;44:507.PubMedGoogle Scholar
  11. 11.
    Stangel JJ, Douglas Nisbet J, Settles H. Formation and prevention of postoperative abdominal adhesions. J Reprod Med 1984;29:143–156.PubMedGoogle Scholar
  12. 12.
    Hertzler AE. The peritoneum. In Hertzler AE, ed. The Peritoneum. St. Louis, MO: CV Mosby, 1919, pp 20–22.Google Scholar
  13. 13.
    Buckman RF, Buckman PD, Hufnagel HU, Caldwell R. A physiologic basis for the adhesion-free healing of deperitonealized surfaces. J Surg Res 1976;21:67.PubMedCrossRefGoogle Scholar
  14. 14.
    Porter JM, McGregor FH, Mullen DC, Silver D. Fibrinolytic activity of mesothelium surfaces. Surg Forum 1969;20:80.PubMedGoogle Scholar
  15. 15.
    Thompson JN, Patterson-Brown S, Harbourne T, et al. Reduced human peritoneal activating activity: Possible mechanism of adhesion formation. Br J Surg 1988;76:382–384.CrossRefGoogle Scholar
  16. 16.
    Vipond MN, Whawell SA, Thompson JN, Dudley HAF. Peritoneal fibrinolytic activity and intra-abdominal adhesions. Lancet 1990;335:1120–1122.PubMedCrossRefGoogle Scholar
  17. 17.
    Sugarbaker PH. Peritoneal carcinomatosis from large bowel and appendiceal cancer: A new approach to treatment. Postgrad Adv Colorectal Surg 1991;11X:1–14.Google Scholar
  18. 18.
    diZerega GS, Rodgers KE. Prevention of postoperative adhesion. In dizerega GS, Rodgers KE, eds. The Peritoneum. New York: Springer-Verlag, 1992, p 307.Google Scholar
  19. 19.
    Yaacobi Y, Goldberg EP. Effect of Ringer’s lactacte irrigation on the formation of postoperative abdominal adhesions. J Invest Surg 1991;4:31–36.PubMedCrossRefGoogle Scholar
  20. 20.
    Rappaport WD, Holcomb M, Valente J, Chvapil M. Antibiotic irrigation and the formation of intraabdominal adhesions. Am J Surg 1989;158:435–437.PubMedCrossRefGoogle Scholar
  21. 21.
    Ellis H. Internal overhealing: The problem of intraperitoneal adhesions. World J Surg 1980;4:303.PubMedCrossRefGoogle Scholar
  22. 22.
    Markman M, Cleary S, Howell SB, Lucas WE. Complications of extensive adhesion formation after intraperitoneal chemotherapy. Surg Gynecol Obstet 1986;162:445–448.PubMedGoogle Scholar
  23. 23.
    Atiq OT, Kelsen DP, Shiu MH, Saltz L, et al. Phase II trial of postoperative adjuvant intraperitoneal cisplatin and Fluorouracil and systemic fluorouracil chemotherapy in patients with rescted gastric cancer. J Clin Oncol 1993;11:425–433.PubMedGoogle Scholar
  24. 24.
    Vlasveld LT, Taal BG, Kroon BB, Gallee MP, Rodenhuis S. Intestinal obstruction due to diffuse peritoneal fibrosis at 2 years after the succesful treatment of malignant peritoneal mesothelioma with intraperitoneal mitoxantrone. Cancer Chemother Pharmacol 1992;29: 405–408.PubMedCrossRefGoogle Scholar
  25. 25.
    Rodgers KE, Girgis W, diZerega GS. Effect of tolmetin sodium dihydrate on adhesion formation by intraperitoneal administration of antineoplastic agents. Cancer Chemother Pharmacol 1992;29:248–251.PubMedCrossRefGoogle Scholar
  26. 26.
    Schmidt RW, Blumenkrantz M. Peritoneal sclerosis. Arch Intern Med 1981;141:1265–1267.PubMedCrossRefGoogle Scholar
  27. 27.
    Bradley JA, McWhinnie DL, Hamilton DN, et al. Sclerosing obstructive peritonitis after continuous ambulatory peritoneal dialysis. Lancet 1983;2:113–114.PubMedCrossRefGoogle Scholar
  28. 28.
    Ferguson MK. The effect of antineoplastic agents on wound healing. Surg Gynecol Obstet 1982;154:421–428.PubMedGoogle Scholar
  29. 29.
    Falcone RE, Nappi JF. Chemotherapy and wound healing. Surg Clin North Am 1984;64: 779–794.PubMedGoogle Scholar
  30. 30.
    Jacquet P, Sugarbaker PH. Abdominal adhesions causing intestinal obstruction following cytoreductive surgery and early potoperative intraperitoneal chemotherapy. Acta Chir Austriaca 1995;27:92–95.CrossRefGoogle Scholar
  31. 31.
    Klausner JM, Lelcuk S, Inbar M, Rozin R. The effects of perioperative fluorouracil administration on convalescence and wound healing. Arch Surg 1986;121:239–242.PubMedGoogle Scholar
  32. 32.
    Costa VP, Spaeth GL, Eiferman RA, Orengo-Nania S. Wound healing modulation in glaucoma surgery. Opthalm Surg 1993;24:152–170.Google Scholar
  33. 33.
    Holtz G. Gynecologic surgery and adhesion prevention: Overview of classical adjuvant approaches. Prog Clin Biol Res 1993;381:81–95.PubMedGoogle Scholar
  34. 34.
    Diamond MP, DeCherney AH. Pathogenesis of adhesion formation/reformation: Application to reproductive pelvic surgery. Microsurgery 1987;8:103–107.PubMedCrossRefGoogle Scholar
  35. 35.
    diZerega GS. The cause and prevention of postsurgical adhesions: A contemporary update. Prog Clin Biol Res 1993;381:1–18.PubMedGoogle Scholar
  36. 36.
    Decherney AH. Preventing postoperative pelvic adhesions with intraperitoneal treatment. J Reprod Med 1984;29:157–161.PubMedGoogle Scholar
  37. 37.
    Killion JJ, Kleinerman ES, Wilson MR, Tanaka M, Filder JJ. Sequential therapy with chemotherapeutic drugs and liposome-encapsulated muramyl tripeptide: Determination of potential interactions between these agents. Oncol Res 1992;4:413–418.PubMedGoogle Scholar
  38. 38.
    Rahman A, Fumagalli A, Barbieri B, Schein PS, Casazza AM. Antitumor and toxicity evaluation of free doxorubicin and doxorubicin entrapped in cardiolipin liposomes. Cancer Chemother Pharmacol 1986;16:22–27.PubMedGoogle Scholar
  39. 39.
    Potkul RK, Gondal J, Bitterman P, Dretchen KL, Rahman A. Toxicities in rats with free versus liposomal encapsulated cisplatin. Am J Obstet Gynecol 1991;164:652–658.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers, Boston 1996

Authors and Affiliations

  • Pierre Jacquet
  • Paul H. Sugarbaker

There are no affiliations available

Personalised recommendations