Ultrasound Angioplasty Using the Angiosonics System

  • Yoram Agmon
  • Hylton I. Miller
  • Uri Rosenschein
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 178)


The development of transluminal balloon angioplasty has significantly modified the therapeutic approach to obstructive coronary [1,2] and peripheral arterial disease [3], Despite overall favorable results with balloon angioplasty, this technique sustains several limitations. These include a relatively limited success rate in complex vascular lesions (eccentric, thrombus-rich, calcified, long, or ostial lesions), acute complications (thrombosis, dissection, and vascular spasm), and the long-term complication of vascular restenosis. Alternative angioplasty techniques have been developed in the past few years in an attempt to resolve these issues (e.g., directional and rotational atherectomy, laser angioplasty, and vascular stents). Still, their role in transluminal angioplasty has yet to be fully defined.


Atherosclerotic Plaque Duty Cycle Balloon Angioplasty Ultrasonic Device Rotational Atherectomy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ryan TJ, Bauman WB, Kennedy JW, et al. Guidelines for percutaneous transluminal coronary angioplasty. Circulation 88:2987–3007, 1993.PubMedGoogle Scholar
  2. 2.
    Landau C, Lange RA, Hillis LD. Percutaneous transluminal coronary angioplasty. N Engl J Med 330:981–993, 1994.PubMedCrossRefGoogle Scholar
  3. 3.
    Isner JM, Rosenfield K. Refining the treatment of peripheral artery disease. Role of per-cutanous revascularization. Circulation 88:1535–1557, 1993.Google Scholar
  4. 4.
    Fuster V, Badimon L, Badimon JJ, Chesebro JH. The pathogenesis of coronary artery disease and the acute coronary syndromes. N Engl J Med 326:242–250, 310–318, 1992.PubMedCrossRefGoogle Scholar
  5. 5.
    Grines CL, Browne KF, Marco J, et al. Comparison of immediate angioplasty with thrombolytic therapy for acute myocardial infarction. N Engl J Med 328:673–679, 1993.PubMedCrossRefGoogle Scholar
  6. 6.
    Zijlstra F, de Boer MJ, Hoorntje JC, Reiffers S, Reiber JH, Suryapranata H. A comparison of immediate coronary angioplasty with intravenous streptokinase in acute myocardial infarction. N Engl J Med 328:680–684, 1993.PubMedCrossRefGoogle Scholar
  7. 7.
    Gibbons RJ, Holmes DR, Reeder GS, Bailey KR, Hopfenspirger MR, Gersh BJ. Immediate angioplasty compared with the administration of a thrombolytic agent followed by conservative treatment for myocardial infarction. N Engl J Med 328:685–691, 1993.PubMedCrossRefGoogle Scholar
  8. 8.
    Mowry R, Hengerer AS. The ultrasonic scalpel in head and neck surgery. Otolaryngol Head Neck Surg 90:305–308, 1982.PubMedGoogle Scholar
  9. 9.
    Hodgson WJB, Poddar PK, Mencer EJ, Williams J, Drew M, McElhinney AJ. Evaluation of ultrasonically powered instruments in the laboratory and in the clinical setting. Am J Gastroenterol 72:133–140, 1979.PubMedGoogle Scholar
  10. 10.
    Mrberger M. Disintegration of renal and urethral calculi with ultrasound. Urol Clin North Am 10:729–741, 1983.Google Scholar
  11. 11.
    Brown AH, Davies PG. Ultrasonic decalcification of calcified cardiac valves and annuli. Br Med J 143:1088–1089, 1972.Google Scholar
  12. 12.
    Rosenschein U, Yakubov SJ, Guberinich D, Bach DS, Sonda PL, Abrams GD, Topol EJ. Shock-wave thrombus ablation, a new method for noninvasive mechanical thrombolysis. Am J Cardiol 70:1358–1361, 1992.PubMedCrossRefGoogle Scholar
  13. 13.
    Kornowski R, Meltzer RS, Chemine A, Vered Z, Battler A. Does external ultrasound accelerate thrombolysis? Circulation 89:339–344, 1994.PubMedGoogle Scholar
  14. 14.
    Rosenschein U, Frimerman A, Laniado S, Miller HI. Study of the mechanism of ultrasound angioplasty from human thrombi and bovine aorta. Am J Cardiol 74:1263–1266, 1994.PubMedCrossRefGoogle Scholar
  15. 15.
    Ernst A, Schenk EA, Gracewski S, et al. Ability of high-intensity ultrasound to ablate human atherosclerotic plaques and minimize debris size. Am J Cardiol 68:242–246, 1991.PubMedCrossRefGoogle Scholar
  16. 16.
    Rosenschein U, Bernstein JJ, DiSegni E, Kaplinsky E, Bernheim J, Rozenzsajn LA. Experimental ultrasonic angioplasty: Disruption of atherosclerotic plaques and thrombi in-vitro and arterial recanalization in-vivo. J Am Coll Cardiol 15:711–717, 1990.PubMedCrossRefGoogle Scholar
  17. 17.
    Rosenschein U, Rozenszajn LA, Kraus L, et al. Ultrasonic angioplasty in totally occluded peripheral arteries. Circulation 83:1976–1986, 1991.PubMedGoogle Scholar
  18. 18.
    Hartneil GG, Saxton JM, Friedl SE, Abela GS, Rosenschein U. Ultrasonic thrombus ablation: In-vitro assessment of a novel device for intracoronary use. J Interven Cardiol 6:69–76, 1993.CrossRefGoogle Scholar
  19. 19.
    Gimenez G. The simultaneous study of light emissions and shock waves produced by cavitation bubbles. J Acoust Soc Am 71:839–846, 1982.CrossRefGoogle Scholar
  20. 20.
    Fischell TA, Abbas MA, Grant GW, Siegel RJ. Ultrasound energy. Effects on vascular function and integrity. Circulation 84:1783–1795, 1991.PubMedGoogle Scholar
  21. 21.
    Siegel RJ, Gaines P, Procter A, Fischell TA, Cumberland DC. Clinical demonstration that catheter-delivered ultrasound energy reverses arterial vasoconstriction. J Am Coll Cardiol 20:732–735, 1992.PubMedCrossRefGoogle Scholar
  22. 22.
    Demer LL, Ariani M, Siegel RJ. High intensity ultrasound increases distensibility of calcific atherosclerotic arteries. J Am Coll Cardiol 18:1259–1262, 1991.PubMedCrossRefGoogle Scholar
  23. 23.
    Siegel RJ, Fishbein MC, Forrester J, Moore K, DeCastro E, Daykhovsky L, DonMichael TA. Ultrasonic plaque ablation. A new method for recanalizing partially or totally occluded arteries. Circulation 78:1443–1448, 1988.PubMedCrossRefGoogle Scholar
  24. 24.
    Hong AS, Chae JS, Dubin SB, Lee S, Fishbein MC, Siegel RJ. Ultrasonic clot disruption: An in-vitro study. Am Heart J 120:418–422, 1990.PubMedCrossRefGoogle Scholar
  25. 25.
    Ariani M, Fishbein MC, Chae JS, Sadeghi H, DonMichael TA, Dubin SB, Siegel RJ. Dissolution of peripheral arterial thrombi by ultrasound. Circulation 84:1680–1688, 1991.PubMedGoogle Scholar
  26. 26.
    Trubestein G, Engel C, Etzel F, Sobbe A, Cremer H, Stumpff U. Thrombolysis by ultrasound. Clin Sci Mol Med 51:697S–698S, 1976.Google Scholar
  27. 27.
    Siegel RJ, DonMichael TA, Fishbein MC, et al. In-vivo ultrasound recanalization of atherosclerotic total occlusions. J Am Coll Cardiol 15:345–351, 1990.PubMedCrossRefGoogle Scholar
  28. 28.
    Siegel RJ, Cumberland DC, Myler RK, DonMichael TA. Percutaneous ultrasonic angioplasty: Initial clinical experience. Lancet 772–774, 1989.Google Scholar
  29. 29.
    Siegel RJ, Gaines P, Crew JR, Cumberland DC. Clinical trial of percutaneous peripheral ultrasound angioplasty. J Am Coll Cardiol 22:480–488, 1993.PubMedCrossRefGoogle Scholar
  30. 30.
    Siegel RJ, Gunn J, Ahsan A, et al. Use of therapeutic ultrasound in percutaneous coronary angioplasty. Experimental in-vitro studies and initial clinical experience. Circulation 89: 1587–1592, 1994.PubMedGoogle Scholar
  31. 31.
    Rosenscein U, Bernheim J, Frimerman A, Keren G, Roth A, Laniado S, Miller H. Coronary ultrasound angioplasty: Study of acute effects in-vivo (abstr). Circulation 88:1–546, 1993.Google Scholar
  32. 32.
    Prevosti LG, Cook JA, Unger EF, Sheffield CD, Almagor Y, Bartorelli AL, Leon MB. Particulate debris from rotational atherectomy: Size distribution and physiologic effects (abstr). Circulation 78(Suppl II):l–83, 1988.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Yoram Agmon
  • Hylton I. Miller
  • Uri Rosenschein

There are no affiliations available

Personalised recommendations