Advertisement

Regulation of αMHC Gene Expression by cAMP

  • Mahesh P. Gupta
  • Madhu Gupta
  • Radovan Zak
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 169)

Abstract

The changes in hemodynamic load of the heart result not only in an altered overall rate of organ growth but also in phenotypic changes. The compensatory growth thus reflects not only the changes in the expression rates of cardiac genes but also in reprogramming of their repertoire and leads to changed properties of the heart.

Keywords

Myosin Heavy Chain Chloramphenicol Acetyl Transferase Myosin Heavy Chain Gene Chloramphenicol Acetyl Transferase Activity Hybrid Motif 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bandman E. 1992. Contractile protein isoforms in muscle development. Dev Biol 154:273–283.PubMedCrossRefGoogle Scholar
  2. 2.
    Shimizu N, Camoretti-Mercada B, Jakovcic S, Zak R. 1992. RNA transcription in heart muscle. In: Fozzard HA, Haber E, Jennings RB, Katz AM, Morgan HE, eds. The Heart and Cardiovascular System, 2nd ed. New York: Raven Press, pp 1525–1538Google Scholar
  3. 3.
    Bugaisky LB, Gupta M, Gupta MP, Zak R. 1992. Cellular and molecular mechanisms of cardiac hypertrophy. In: Fozzard HA, Haber E, Jennings RB, Katz AM, Morgan HE, eds. The Heart and Cardiovascular System, 2nd ed. New York: Raver Press, pp 1621–1640.Google Scholar
  4. 4.
    Emerson CP, Berstein SI. 1987. Molecular genetics of myosin. Annu Rev Biochem 56:695–726.PubMedCrossRefGoogle Scholar
  5. 5.
    Olson EN, Klein WH. 1994. bHLH factors in muscle development: Dead lines and commitments, what to leave in, what to leave out. Genes Dev 8:1–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Benezra R, Davis RL, Lockshon D, Turner DL, Weintraub H. 1990. The protein Id: A negative regulator of helix-loop-helix DNA binding protein. Cell 61:49–59.PubMedCrossRefGoogle Scholar
  7. 7.
    Li L, Chambard JC, Karin M, Olson EN. 1992. Fos andjun repress transcriptional activation by myogenin and MyoD: The amino terminus of Jun can mediate repression. Genes Dev 6:676–689.PubMedCrossRefGoogle Scholar
  8. 8.
    Gu W, Schneider JW, Condorelli G, Kaushal S, Mahdavi V, Nadal-Ginard B. 1993. Interaction of myogenic factors and the retinoblastoma protein mediates muscle cell commitment and differentiation. Cell 72:309–324.PubMedCrossRefGoogle Scholar
  9. 9.
    Arber S, Halder G, Caroni P. 1994. Muscle LIM protein, a novel essential regulator of myogenesis, promotes myogenic differentiation. Cell 79:221–231.PubMedCrossRefGoogle Scholar
  10. 10.
    Gustafson TA, Miwa T, Boxer LM, Kedes L. 1988. Interaction of nuclear proteins with muscle-specific regulatory sequences of the human cardiac α-actin proloter. Mol Cell Biol 8:4110–4119.PubMedGoogle Scholar
  11. 11.
    Kurabayashi M, Komuro I, Shibasaki Y, Tsuchimochi H, Takaku F, Yazaki Y. 1990. Functional identification of the transcriptional regulatory elements within the promoter region of the human ventricular myosin alkali light chain gene. J Biol Chem 265:19271–19278.PubMedGoogle Scholar
  12. 12.
    Mar JH, Ordahl CP. 1990. M-CAT binding factor, a novel transcription factor governing muscle-specific transcription. Mol Cell Biol 12:619–630.Google Scholar
  13. 13.
    Shimizu N, Dizon E, Zak R. 1992. Both muscle-specific and ubiquitous nuclear factors are required for muscle-specific expression of the myosin heavy chain β-gene in cultured cells. Mol Cell Biol 12:619–630.PubMedGoogle Scholar
  14. 14.
    Springhorn JP, Ellingsen O, Berger H-J, Kelly RA, Smith TW. 1992. Transcriptional regulation in cardiac muscle. Cooordinate expression of Id with neonatal phenotype during development and following a hypertrophic stimulus in adult rat ventricular myocytes in vitro. J Biol Chem 267:14360–14365.PubMedGoogle Scholar
  15. 15.
    Sartorelli V, Redes L. 1992. Myocardial activation of the human cardiac a-actin promoter by helix-loop-helix proteins. Proc Natl Acad Sci USA 89:4047–4051.PubMedCrossRefGoogle Scholar
  16. 16.
    Parmacek MS, Vora AJ, Shen T, Barr E, Jung F, Leiden JM. 1992. Identification and characterization of a cardiac specific transcriptional regulatory element in the slow/cardiac troponin C gene. Mol Cell Biol 12:1967–1976.PubMedGoogle Scholar
  17. 17.
    Yu Y-T, Breitbart RE, Smoot LB, Lee Y, Mahdavi V, Nadal-Ginard B. 1992. Human myocyte specific enhancer factor 2 comprizes a group of tissue restricted MADS box transcription factors. Genes Dev 6:1783–1796.PubMedCrossRefGoogle Scholar
  18. 18.
    Zhu H, Nguyen VTB, Brown AB, Pourhoseini A, Garcia AV, van Bilsen M, Chien KR. 1993. A novel tissue restricted zinc finger protein (HF-lb) binds cardiac regulatory clement (HF-IF/MEF-2) within the rat myosin light chain-2 gene. Mol Cell Biol 13:4432–4444.PubMedGoogle Scholar
  19. 19.
    Arceci R, King A, Simon M, Orkin S, Wilson D. 1993. Mouse GATA-4: A retinoic acid inducible GATA-binding transcription factor expressed in endodermally derived tissues and heart. Mol Cell Biol 13:2235–2246.PubMedGoogle Scholar
  20. 20.
    Komuro I, Izumo S. 1993. Csx: A murine homcobox-containing gene specifically expressed in the developing heart. Proc Natl Acad Sci USA 90:8145–8149.PubMedCrossRefGoogle Scholar
  21. 21.
    Kints T, Parsons LM, Lyons I, Harvey R. 1993. Nkx-2.5: A novel murine homeobox gene expressed in early heart progenitors and their myogenic descendants. Development 119:419–431.Google Scholar
  22. 22.
    Roesler WJ, Vanderbark GR, Hanson RW. 1988. Cyclic AMP and the induction of eukaryo-tic gene transcription. J Biol Chem 263:9063–9066.PubMedGoogle Scholar
  23. 23.
    Smith JD, Liu AY-C. 1988. Increased turnover of the messenger RNA encoding tyrosine aminotransferase by 8-bromo-cyclic AMP treatment and removal. EMBOJ 7:3711–3716.Google Scholar
  24. 24.
    Gupta MP, Gupta M, Zak R. 1994. An E-box/M-CAT hybrid motif and cognate binding protein(s) regulate the basal muscle-specific and cAMP-inducible expression of the rat cardiac α-myosin heavy chain gene. J Biol Chem 269:29677–29687.PubMedGoogle Scholar
  25. 25.
    Higuchi R. 1990. Recombinant PCR. In: Iunis MA, et al., eds. PCR Protocols: A Guide to Methods and Applications. New York: Academic Press, pp 177–183.Google Scholar
  26. 26.
    Olsen DB, Eckstein F. 1990. High-efficiency oligonucleotide-directed plasmid mutagenesis. Proc Natl Acad Sci USA 87:1451–1455.PubMedCrossRefGoogle Scholar
  27. 27.
    Montminy MR, Sevarino KA, Wagner JA, Mandel G, Goodman RH. 1986. Identification of a cyclic-AMP-responsive element within the rat somatostatin gene. Proc Natl Acad Sci USA 83:6682–6686.PubMedCrossRefGoogle Scholar
  28. 28.
    Kann M. 1989. Complexities of gene regulation by cAMP. Trends Genet 5:65–66.CrossRefGoogle Scholar
  29. 29.
    DeNote FM, Moore DD, Goodman HM. 1981. Human growth hormone DNA sequence and mRNA structure: Possible alternative splicing. Nucleic Acids Res 9:3719–3730.CrossRefGoogle Scholar
  30. 30.
    Moss JB, McQuinn TC, Schwartz RJ. 1994. The avian cardiac α-actin promoter is regulated through a pair of complex elements composed of E boxes and serum response elements that bind both positive and negative-acting factors. J Biol Chem 269:12731–12740.PubMedGoogle Scholar
  31. 31.
    Molkentin JD, Brogan RS, Jobe SM, Markham BE. 1993. Expression of the α-myosin heavy chain gene in the heart is regulated in part by an E-box-dependent mechanism. J Biol Chem 268:2602–2609.PubMedGoogle Scholar
  32. 32.
    Navankasattusas S, Zhu H, Garcia AV, Evans SM, Chien KR. 1992. A ubiquitous factor (HF-1a) and a distinct muscle factor (HF-lb/MEF-2) form a E-box-independent pathway for cardiac muscle gene expressiob. Mol Cell Biol 12:1469–1479.PubMedGoogle Scholar
  33. 33.
    Farrance IKG, Mar JH, Ordahl CP. 1992. M-CAT binding factor is related to the SV 40 enhancer binding factor, TEF-1. J Biol Chem 267:17234–17240.PubMedGoogle Scholar
  34. 34.
    Yotzek KE, Konieczny SF. 1992. Different E-box regulatory sequences are functionally distinct when placed within the context of the troponin-I enhancer. Nucleic Acids Res 20:5105–5113.CrossRefGoogle Scholar
  35. 35.
    Yamamoto KK, Gonzales GA, Biggs WH, Montminy MR. 1988. Phosphorylation-induced binding and transcriptional efficacy of nuclear factor CREB. Nature 334:494–498.PubMedCrossRefGoogle Scholar
  36. 36.
    Shimizu N, Smith G, Izumo S. 1993. Both a ubiquitous factor mTEF-1 and a distinct muscle specific factor bind to the M-CAT motif of the myosin heavy chain β gene. Nucleic Acids Res 21:4103–4110.PubMedCrossRefGoogle Scholar
  37. 37.
    Ishiji T, Lace MJ, Parkkinen S, Anderson RD, Haugen TH, Cripe TP, Xiao JH, Davidson I, Chambon P, Turek LP. 1992. Transcriptional enhancer factor (TEF)-l and its cell-specific co-activator activate human pappilomavirus-16 E6 and E7 oncogene transcription in keratinocytes and cervical carcinoma cells. EMBOJ 11:2271–2281.Google Scholar
  38. 38.
    Baeuerle PA, Baltimore D 1988. IkB: A specific inhibitor of the NF-kB transcriptional factor. Science 242:540–546.PubMedCrossRefGoogle Scholar
  39. 39.
    Hirokoshi M, Hai T, Lin Y-S, Green MR, Roeder RG. 1988. Transcription factor ATF interacts with the TATA factor to facilitate establishment of a preinitiation complex. Cell 54:1033–1042.CrossRefGoogle Scholar
  40. 40.
    Sassone-Corsi P, Sisson JC, Verma IM. 1988. Transcriptional autoregulation of the pro-tooncogene fos. Nature 334:314–319.PubMedCrossRefGoogle Scholar
  41. 41.
    Jakob R. 1990. The functional ambivalence of adaptive process-considerations based on the example of hemodynamically overloaded heart. Basic Res Cardiol, 86(Suppl 3):3–12.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Mahesh P. Gupta
  • Madhu Gupta
  • Radovan Zak

There are no affiliations available

Personalised recommendations