Advertisement

Myocardial Cell Abnormalities in Heart Failure: Experience from Studies on Single Myocytes

  • Crispin H. Davies
  • Lesley A. Brown
  • Federica Del Monte
  • Philip A. Poole-Wilson
  • Sian E. Harding
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 169)

Abstract

In the majority of patients with heart failure the underlying cause is one of myocardial dysfunction, which may in itself be either primary in origin or secondary to diseases of the coronary arteries or of the heart valves. In terms of cellular structure and function, myocardial failure can be due to abnormalities in the myocytes themselves or to abnormalities in the surrounding extracellular matrix. Histological studies in ischemic and dilated cardiomyopathy have revealed a spectrum of histological changes, including collagen accumulation, fibrosis, loss of myofilaments, myocyte slippage, myocyte hypertrophy, and cell death [1–3]. Although these changes alone have been postulated to produce progressive myocardial failure due to disruption of ventricular geometry [4], there is also evidence of a substantial functional impairment of the cardiac myocytes. In this chapter we review the evidence for the role played by this impairment of myocyte function, which has been identified from studies using isolated cardiac myocytes.

Keywords

Cardiac Myocytes Ventricular Myocytes Human Heart Failure Transient Outward Current Human Ventricle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beltrami CA, Finato N, Rocco M, et al. 1994. Structural basis of end stage ischaemic cardiomyopathy. Circulation 89:151–163.PubMedGoogle Scholar
  2. 2.
    Hare JM, Walford GD, Hruban RH, Hutchins GM, Deckers JW, Baughman KL. 1992. Ischaemic cardiomyopathy: Endomyocardial biopsy and ventriculographic evaluation of patients with congestive heart failure, dilated cardiomyopathy and coronary artery disease. Am Coll Cardiol 20:1318–1325.CrossRefGoogle Scholar
  3. 3.
    Scholtz D, Diener W, Schaper J. 1994. Altered nucleus/cytoplasmic relationship and degenerative structural changes in human dilated cardiomyopathy. Cardioscience 5:127–138.Google Scholar
  4. 4.
    Pouleur H, Rousseau H, van Eyll C, Melin J, Youngblood M, Yusuf S. 1993. Cardiac mechanics during development of cardiac failure. Circulation 87(Suppl IV):IV14–IV20.PubMedGoogle Scholar
  5. 5.
    Mulieri LA, Hasenfuss G, Ittleman F, Blanchard EM, Alpert NR. 1989. Protection of human left ventricular myocardium from cutting injury with 2,3 butendione monoxime. Circ Res 65:1441–1444.PubMedGoogle Scholar
  6. 6.
    del Monte F, Harding SE, Rosano GMC, Poole-Wilson PA. 1993. Contractile properties of hypertrophic and nonhypertrophic human ventricular myocytes. J Am Coll Cardiol 21: 284A–778–3.Google Scholar
  7. 7.
    Beukelmann DJ, Nabauer M, Erdmann E. 1993. Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure. Circulation 85:1046–1055.Google Scholar
  8. 8.
    Davies CH, Davia K, Bennett H, Pepper J, Poole-Wilson PA, Harding SE. 1995. Reduced contraction and altered frequency response of isolated ventricular myocytes from patients with heart failure. Circulation, in press.Google Scholar
  9. 9.
    Peeters GA, Renlund DG, Barry WH. 1992. Isolation of Ca2+ tolerant human right ventricular myocytes from transvenous endomyocardial biopsy specimens. Circulation 86(Suppl I):I-91.Google Scholar
  10. 10.
    Harding SE, Jones SM, del Monte F, Vescovo G, Poole-Wilson PA. 1992. Isolated ventricular myocytes from failing and non failing human heart; the relation of age and clinical status to isoproterenol response. J Mol Cell Cardiol 24:549–564.PubMedCrossRefGoogle Scholar
  11. 11.
    Harding SE, Gurden JM, Poole-Wilson PA. 1991. A comparison of contractile function between papillary muscles and isolated cardiac myocytes from the same hearts. Cardioscience 2:141–146.PubMedGoogle Scholar
  12. 12.
    del Monte F, Kaumann AJ, Poole-Wilson PA, Wynne DG, Pepper J, Harding SE. 1993. Coexistence of functioning β1- and β2-adrenoceptors in single myocytes from human ventricle. Circulation 88:854–863.PubMedGoogle Scholar
  13. 13.
    Capogrossi MC, Kort AA, Spurgeon HA, Lakatta EG. 1986. Single adult rabbit and rat cardiac myocytes retain the Ca2+ and species dependent systolic contractile properties of intact muscle. J Gen Physiol 88:589–613.PubMedCrossRefGoogle Scholar
  14. 14.
    Brady AJ. 1991. Mechanical properties of isolated cardiac myocytes. Physiol Rev 71:413–428.PubMedGoogle Scholar
  15. 15.
    Parik SS, Zou S-Z, Tung L. 1993. Contraction and relaxation of isolated cardiac myocytes of the frog under varying mechanical loads. Circ Res 72:297–311.Google Scholar
  16. 16.
    Urabe Y, Hamada Y, Spinale FG, Carabello BA, Kent RL, Cooper G, Mann DL. 1993. Cardiocyte contractile performance in experimental biventricular volume-overloaded hypertrophy. Am J Physiol 264(Heart Circ Physiol 33):H1615–H1623.PubMedGoogle Scholar
  17. 17.
    Silverman HS, Stern MD. 1994. Ionic basis of ischaemic cardiac injury: Insights from cellular studies. Circ Res 28:581–597.Google Scholar
  18. 18.
    Harding SE, Macleod KT, Davies CH, Wynne DG, Poole-Wilson PA. 1995. Abnormalities of the myocytes in ischaemic cardiomyopathy. Eur Heart J, in press.Google Scholar
  19. 19.
    Schwinger RHG, Böhm M, Muller-Ehmsen J, Uhlmann R, Schmidt U, Stäblein A, Überfuhr P, Kreuzer E, Reichart B, Eissner H-J, Erdmann E. 1993. Effect of inotropic stimulation on the negative force-frequency relationship in the failing human heart. Circulation 88(Part l):2267–2276.PubMedGoogle Scholar
  20. 20.
    Phillips PJ, Gwathmey JK, Feldman MD, Schoen FJ, Grossman W, Morgan JP. 1990. Post-extrasystolic potentiation and the force-frequency relationship: Differential augmentation of myocardial contractility in working myocardium from patients with end-stage heart failure. J Mol Cell Cardiol 22:99–110.PubMedCrossRefGoogle Scholar
  21. 21.
    Hasenfuss G, Mulierl LA, Leavitt BJ, Allen PD, Haeberle JR, Alpert NR. 1992. Alteration of contractile function and excitation-contraction coupling in dilated cardiomyopathy. Circ Res 70:1225–1232.PubMedGoogle Scholar
  22. 22.
    Maughan D, Low E, Litten R, Brayden J, Alpert NR, 1979. Calcium-activated muscle from hypertrophied rabbit hearts. Mechanical and correlated biochemical changes. Circ Res 44:279–287.PubMedGoogle Scholar
  23. 23.
    Bristow MR, Anderson FL, Port DJ, Skerl L, Hershberger RE, Larabee P, O’Connell JB, Renlund DG, Volkmann K, Murray J, Feldmann AM. 1991. Differences in β-adrenergic neuroeffector mechanisms in ischaemic versus idiopathic dilated cardiomyopathy. Circulation 84:1024–1039.PubMedGoogle Scholar
  24. 24.
    Steinfath M, Danielsen W, von der Leyen H, Mende U, Neumann J, Nose M, Reich T, Schmitz W, Scholtz H, Starbatty J, Stein B, Döring V, Kalmer P, Haverich A. 1992. Reduced α1- and β2-adrenoceptor-mediated positive inotropic effects in human end-stage heart failure. Br J Pharmacol 105:463–469.PubMedGoogle Scholar
  25. 25.
    Böhm M, Beukelmann DJ, Brown L, Feiler G, Lorenz B, Näbauer M, Kemkes B, Erdmann E. 1988. Reduction of beta adrenoceptor density and evaluation of positive inotropic responses in isolated diseased human myocardium. Eur Heart J 9:844–852.PubMedGoogle Scholar
  26. 26.
    Pieske B, Kretschmann B, Schmidt-Scheuda S, Minami K, Posival H, Holubarsch C, Just H, Hasenfuss G. 1993. Alterations in intracellular calcium handling are a major cause for the inverse force-frequency relationship in the failing human myocardium (abstr.). Eur Heart J 14(Suppl):21.Google Scholar
  27. 27.
    Gwathmey JK, Slawsky MT, Hajjar RJ, Briggs GM, Morgan JP. 1990. Role of intracellular calcium handling in force-frequency relationships of human ventricular myocardium. J Clin Invest 85:1599–1613.PubMedCrossRefGoogle Scholar
  28. 28.
    Pfeffer MA, Braunwald E, Moye LA, Basta L, Brown EJ, Cuddy TE, Davis BR, Geltman EM, Goldman S, Flakerm GC. 1993. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survivial and ventricular enlargement trial. The SAVE investigators. N Engl J Med 327:669–677.CrossRefGoogle Scholar
  29. 29.
    Anversa P, Li P, Zhang X, Olivetti G, Capasso JM. 1994. Ischaemic myocardial injury and ventricular remodellimg. Cardiovasc Res 27:145–157.CrossRefGoogle Scholar
  30. 30.
    Packer M. 1992. Pathophysiology of chronic heart failure. Lancet 340:88–92.PubMedCrossRefGoogle Scholar
  31. 31.
    Spirito P, Maron BJ, Bonow RO. 1986. Noninvasive assessment of left ventricular diastolic function: Comparative analysis of Doppler echocardiographic and radionucleotide angiographic techniques. J Am Coll Cardiol 7:518–526.PubMedCrossRefGoogle Scholar
  32. 32.
    Weber KT. 1989. Cardiac interstitium in health and disease: The fibrillar collagen network. J Am Coll Cardiol 13:1637–1652.PubMedCrossRefGoogle Scholar
  33. 33.
    del Monte F, O’Gara P, Poole-Wilson PA, Yacoub MH, Harding SE. 1995. Cell geometry and contractile abnormalities of myocytes from failing human ventricle. Cardiovasc Res, in press.Google Scholar
  34. 34.
    Limas CJ, Olivari M-T, Goldenburg IF, Levine TB, Benditt DG, Simon A. 1987. Calcium uptake by cardiac sarcoplasmic reticulum in human dilated cardiomyopathy. Circ Res 21:601–605.Google Scholar
  35. 35.
    Movesian MA, Bristow MR, Krall J. 1989. Ca2+ Uptake by cardiac sarcoplasmic reticulum from patients with idiopathic dilated cardiomyopathy. Circ Res 65:1141–1144.Google Scholar
  36. 36.
    Gwathmey JK, Copelas L, Mackinon R, Schoen FJ, Feldman MD, Grossman W, Morgan JP. 1987. Abnormal intracellular calcium handling in myocardium from patients with end stage heart failure. Circ Res 61:70–76.PubMedGoogle Scholar
  37. 37.
    Allen DG, Kurihara S. 1982. The effect of muscle length on intracellular calcium transients in mammalian cardiac muscle. J Physiol 327:79–94.PubMedGoogle Scholar
  38. 38.
    Beukelmann DJ, Näbuer M, Erdmann E. 1991. Characteristics of calcium current in isolated human ventricular myocytes from patients with terminal heart failure. J Mol Cell Cardiol 23:929–937.CrossRefGoogle Scholar
  39. 39.
    Rasmussen PR, Minobe W, Bristow MR. 1990. Calcium antagonist binding sites in failing and non-failing human myocardium. Biochem Pharmacol 39:691–696.PubMedCrossRefGoogle Scholar
  40. 40.
    Hart G. 1994. Cellular electrophysiology in cardiac hypertrophy and failure. Cardiovasc Res 28:933–946.PubMedCrossRefGoogle Scholar
  41. 41.
    Feldman MD, Copelas L, Gwathmey JK, Phillips PJ, Warren S, Schoen FJ, Grossman W, Morgan JP. 1987. Deficient production of cyclic AMP: Pharmacologic evidence of an important cause of contractile dysfunction in patients with end stage heart failure. Circulation 75:331–339.PubMedCrossRefGoogle Scholar
  42. 42.
    Näbuer M, Beukelmann DJ, Erdmann E. 1993. Characteristics of transient outward current in human ventricular myocytes from patients with terminal heart failure. Circ Res 73: 386–394.Google Scholar
  43. 43.
    Wettwer E, Amos G, Gath J, Zerkowski H-R, Reidemer J-G, Ravens U. 1993. Transient outward current in human and rat ventricular myocytes. Circ Res 27:1662–1669.Google Scholar
  44. 44.
    Wettwer E, Amos G, Posival H, Ravens U. 1995. Transient outward current (It0) in human ventricular myocytes of subepi- and subendocardial origin. Circ Res, in press.Google Scholar
  45. 45.
    Barry WH, Bridge JH. 1993. Intracellular calcium homeostasis in cardiac myocytes. Circulation 87:1806–1815.PubMedGoogle Scholar
  46. 46.
    Moalic J-M, Charlamange D, Mansier P, Chevalier B, Swynghedauw B. 1993. Cardiac hypertrophy and failure — a disease of adaptation-modifications in membrane proteins provide a molecular basis for arrhythmogenicity. Circulation 87(Suppl IV):IV21–IV26.Google Scholar
  47. 47.
    Bristow MR, Ginsburg R, Minde W, Cubiciotti RS, Sageman WS, Billingham ME, Harrison DC, Stinon EB. 1982. Decreased cathecolamine sensitivity and β-adrenergic — receptor density in failing human hearts. N Engl J Med 307:205–211.PubMedCrossRefGoogle Scholar
  48. 48.
    Harding SE, Jones SM, O’Gara P, Vescovo G, Poole-Wilson PA. 1990. Reduced beta agonist sensitivity in single atrial cells from failing human hearts. Am J Physiol 259:H1009–H1014.PubMedGoogle Scholar
  49. 49.
    Harding SE, Jones SM, Vescovo G, del Monte F, Poole-Wilson PA. 1992. Reduced contractile responses to forskolin and a cyclic AMP analogue in myocytes from failing human ventricle. Eur J Pharmacol 223:39–48.PubMedCrossRefGoogle Scholar
  50. 50.
    Nabauer M, Böhm M, Brown L, Diet F, Eichorn M, Kemkes B, Pieske B, Erdmann E. 1988. Positive inotropic effects in isolated ventricular myocardium from non-failing and terminally failing human hearts. Eur J Clin Invest 18:600–606.PubMedCrossRefGoogle Scholar
  51. 51.
    Wynne DG, Poole-Wilson PA, Harding SE. 1993. Incomplete reversal of β-adrenoceptor desensitisation by cyclic nucleotide phosphodiesterase inhibition in isolated cardiac myocytes from patients with heart failure and noradrenaline-treated guinea-pigs. Br J Pharmacol 109:1071–1078.PubMedGoogle Scholar
  52. 52.
    Packer M, Carver JP, Rodenheffer RJ, Ivanhoe RJ, Di Bianco R, Zeldis SM. 1991. Effect of oral milrinone on mortality in severe chronic heart failure: The prospective randomised milrinone survival evaluation (PROMISE). N Engl J Med 325:1648–1475.CrossRefGoogle Scholar
  53. 53.
    Pieske B, Hasenfuss G, Holubarsch C, Schwinger RHG, Böhm M, Just H. 1992. Alterations of the force-frequency relationship in the failing human heart depend on the underlying cardiac disease. Basic Res Cardiol 87(Suppl 1):213–221.PubMedGoogle Scholar
  54. 54.
    Feldman AM, Cates AE, Veazy WB, Hershberger RE, Bristow MR, Baughman KL, Baumgartner WA, Van Dop C. 1988. Increase in the 40,000-mol wt pertusis toxin substrate (G protein) in the failing human heart. J Clin Invest 82:189–197.PubMedCrossRefGoogle Scholar
  55. 55.
    Brown LA, Harding SE. 1992. The effect of perstusis toxin on β-adrenoceptor responses in isolated cardiac myocytes from noradrenaline treated guinea-pigs and patients with cardiac failure. Br J Pharmacol 106:115–112.PubMedGoogle Scholar
  56. 56.
    Harding SE, Brown LA, Wynne DG, Davies CH, Poole-Wilson PA. 1994. Mechanisms of beta-adrenoceptor desensitisation in the failing human heart. Cardiovasc Res 28:1451–1460.PubMedCrossRefGoogle Scholar
  57. 57.
    Steinfath M, Lavicky J, Schmitz W, Scholtz H, Downey JM, Doring V, Kalmar P. 1992. Regional distribution of β1- and β2-adrenoceptors in the failing and non-failing human heart. Eur J Pharmacol 42:607–611.Google Scholar
  58. 58.
    Bristow MR, Hershberger RE, Port DJ, Minobe W, Rasmussen PR, Murray J, Feldman AM. 1989. β1- and β2-adrenergic receptor-mediated adenylate cyclase stimulation in failing and non-failing human ventricular myocardium. Mol Pharmacol 35:295–303.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Crispin H. Davies
  • Lesley A. Brown
  • Federica Del Monte
  • Philip A. Poole-Wilson
  • Sian E. Harding

There are no affiliations available

Personalised recommendations