Skip to main content

Abnormalities in Cardiac Contractile Proteins and Cardiac Dysfunction

  • Chapter
Pathophysiology of Heart Failure

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 168))

  • 162 Accesses

Abstract

Multiple changes occur in the cardiac contractile protein assembly that contribute in concert to altered contractile performance in different pathologic states. It has been shown that cardiac myosin in some species exists in three isoenzymic forms and that these may vary depending on the animal’s age, species, and physiologic or pathologic state [1]. Isoenzymic changes in myosin can account for the changes in ATPase activity observed in a variety of models of cardiac hypertrophy [2]. A great deal of work in cardiac hypertrophy and failure has focused upon alterations in myosin ATPase activity and isoenzymes. Abnormalities in myofibrillar dose-response curves have been observed in experimental diabetic cardiomyopathy [3,4], pressure induced overload with and without congestive heart failure, ischemic cardiomyopathy, and idiopathic cardiomyopathy [5,6]. However, alterations in myosin have not been observed in humans. Thus, some component or components in the myofibrillar assembly other than myosin must be responsible for the decrement in cardiac funcition associated with heart disease in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schwartz K, Lecarpentier Y, Martin JL, Lompre AM, Mercadier JJ, Swynghedauw B. 1981. Myosin isoenzyme distribution correlated with speed of myocardial contraction. J Mol Cell Cardiol 13:1071–1075.

    Article  PubMed  CAS  Google Scholar 

  2. Mercadier JJ, Lompre AM, Wisnewsky C, Samuel JL, Bervovici J, Swynghedauw B, Schwartz K. 1981. Myosin isoenzymic changes in several models of rat cardiac hypertrophy. Circ Res 49:525–532.

    PubMed  CAS  Google Scholar 

  3. Dhalla NS, Sulakhe DV, Fedelesova M, Yates JC. 1974. Molecular abnormalities in cardiomyopathy. Adv Cardiol 13:282–300.

    PubMed  CAS  Google Scholar 

  4. Pierce GN, Dhalla NS. 1981. Cardiac myofibrillar ATPase activity in diabetic rats. J Mol Cell Cardiol 13:1063–1069.

    Article  PubMed  CAS  Google Scholar 

  5. Alpert NR, Gordon MS. 1962. Myofibrillar adenosine triphosphatase activity in congestive heart failure. Am J Physiol 20:940–946.

    Google Scholar 

  6. Pagani ED, Alonsi AA, Grant AM, Older TM, Dziuban SW, Allen PD. 1988. Changes in myofibrillar content and Mg2+-ATPase activity in ventricular tissues from patients with heart failure caused by coronary artery disease, cardiomyopathy, or mitral valve insufficiency. Circ Res 63:380–385.

    PubMed  CAS  Google Scholar 

  7. Malhotra A, Karell M, Scheuer J. 1985. Multiple cardiac contractile protein abnormalities in myopathic Syrian hamsters. J Mol Cell Cardiol 17:95–107.

    Article  PubMed  CAS  Google Scholar 

  8. Malhotra A, Penpargkul S, Fein FS, Sonnenblick EH, Scheuer J. 1981. The effect of streptozotocin induced diabetes in rats on cardiac contractile proteins. Circ Res 49:1243–1250.

    PubMed  CAS  Google Scholar 

  9. Spudich JA, Watt S. 1971. The regulation of rabbit skeletal muscle contraction. J Biol Chem 246:4866–4871.

    PubMed  CAS  Google Scholar 

  10. SolaroJR, Pang D, Briggs N. 1971. The purification of cardiac myofibrils with Triton X-100. Biochem Biophys Acta 245:259–262.

    Article  PubMed  CAS  Google Scholar 

  11. Malhotra A. 1990. Regulatory proteins in hamster cardiomyopathy. Circ Res 66:1302–1309.

    PubMed  CAS  Google Scholar 

  12. Malhotra A, Scheuer J. 1990. Troponin-tropomyosin abnormalities in hamster cardiomyopathy. J Clin Invest 86:286–292.

    Article  PubMed  CAS  Google Scholar 

  13. Guan KL, Dixon JE. 1991. Eukaryotic proteins expressed in Escherichia coli: an improved thrombin cleavage and purification procedure of fusion proteins with glutathione-S-transferase. Anal Biochem 192:262–267.

    Article  PubMed  CAS  Google Scholar 

  14. Laemmli UK. 1970. Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227:680–685.

    Article  PubMed  CAS  Google Scholar 

  15. Towbin H, Staehelin T, Gordon J. 1979. Electrophoretic transfer of proteins from Polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci 76:4350–4354.

    Article  PubMed  CAS  Google Scholar 

  16. Potter JD. 1982. Preparation of troponin and its subunits. Methods Enzymol 85:241–263.

    Article  PubMed  CAS  Google Scholar 

  17. Tobacman LS, Lee R. 1987. Isolation and functional comparison of bovine cardiac troponin T isoforms. J Biol Chem 262:4059–4064.

    PubMed  CAS  Google Scholar 

  18. Holroyde MJ, Howe E, Solaro RJ. 1979. Modification of calcium requirements for activation of cardiac myofibrillar ATPase by cyclic AMP dependent phosphorylation. Biochim Biophys Acta 586:63–69.

    CAS  Google Scholar 

  19. Zak B, Epstein E, Baginski ES. 1977. Determination of liver microsomal glucose 6-phosphatase. Ann Clin Lab Sci 7:169–177.

    PubMed  CAS  Google Scholar 

  20. Fabiato A, Fabiato F. 1979. Calculated program for computing the composition of the solutions containing multiple metals and ligands used for the experiments in skinned muscle cells. J Physiol (Paris) 75:463–505.

    CAS  Google Scholar 

  21. Zar JH. 1974. Biostatistical Analysis. Prentice Hall: Englewood Cliffs, NJ, pp. 151–155.

    Google Scholar 

  22. Anversa P, Li P, Malhotra A, Zhang X, Herman MV, Capasso JM. 1993. Effects of hypertension and coronary artery constriction on ventricular function, myocardial morphology and cardiac contractile proteins in rats. Am J Physiol 265:8713–8724.

    Google Scholar 

  23. Capasso JM, Malhotra A, Peng L, Zhang X, Scheuer J, Anversa P. 1992. Chronic non-occlusive coronary artery constriction impairs ventricular function, myocardial structure, and cardiac contractile protein enzyme activity in rats. Circ Res 70:148–162.

    PubMed  CAS  Google Scholar 

  24. Malhotra A, Siri FM, Aronson R. 1992. Cardiac contractile proteins in hypertrophied and failing guinea pig hearts. Cardiovasc Res 26:153–161.

    Article  PubMed  CAS  Google Scholar 

  25. Geenen DL, Malhotra A. 1991. Ventricular function and contractile proteins in the infarcted rat heart exposed to chronic pressure overload. Cardiovasc Res 25:330–336.

    Article  PubMed  CAS  Google Scholar 

  26. Malhotra A, Fein FS, Lopez MC. 1991. Regulatory proteins (Troponin-Tropomyosin) in diabetic cardiomyopathy. Biophys J 59:587a.

    Google Scholar 

  27. Fein FS, Cho S, Malhotra A, Akella J, Vanhoeven KH, Sonnenblick EH, Factor SM. 1991. Beneficial effects of diltiazem on the natural history of hypertensive-diabetic cardiomyopathy in rats. J Am Coll Cardiol 18:1406–1417.

    Article  PubMed  CAS  Google Scholar 

  28. Dillmann WH. 1982. Influence of thyroid hormone administration on myosin ATPase activity and myosin isoenzyme distribution in the hearts of diabetic rats. Metabolism 31:199–204.

    Article  PubMed  CAS  Google Scholar 

  29. Schachat FH, Bronson DD, McDonald OB. 1985. Heterogeneity of contractile proteins: a continuum of troponin-tropomyosin expression in mammalian skeletal muscle. J Biol Chem 260:1108–1113.

    PubMed  CAS  Google Scholar 

  30. Cole HA, Perry SV. 1975. The phosphorylation of troponin-I from cardiac muscle. Biochem J 149:525–533.

    PubMed  CAS  Google Scholar 

  31. Roberston SP, Johnson JD, Holriode MJ, Kranias EC, Potter JD, Solar RJ. 1982. The effect of troponin-I phosphorylation on the calcium binding properties of the Ca2+ regulatory site of bovine cardiac troponin. J Biol Chem 257:260–263.

    Google Scholar 

  32. Nadal-Ginard B, Mahdavi V. 1989. Molecular basis of cardiac performance. J Clin Invest 84:1693–1700.

    Article  PubMed  CAS  Google Scholar 

  33. Cummins B, Russell GJ, Cummins P. 1991. A monoclonal antibody that distinguishes phospho and dephosphorylated forms of cardiac troponin-I. Biochem Soc Trans 19: 1615–1619.

    Google Scholar 

  34. Noland Jr, Kuo JF. 1991. Protein kinase C-mediated phosphorylation of cardiac troponin I or troponin T inhibits Ca2+-stimulated actomyosin Mg ATPase activity. J Biol Chem 266:4974–4978.

    PubMed  CAS  Google Scholar 

  35. Venema RC, Kuo JF. 1993. Protein kinase C-mediated phosphorylation of tropnin of myofibrillar actomyosin Mg ATPase. J Biol Chem 268:2705–2711.

    PubMed  CAS  Google Scholar 

  36. Strauss JD, Zeugner C, Van Eyk JE, Bletz M, Troscka M, Ruegg JC. 1992. Troponin replacement in permeabilized cardiac muscle. FEB S Lett 310:229–234.

    Article  CAS  Google Scholar 

  37. Tobacman LS, Lee R. 1987. Isolation and functional comparison of bovine cardiac troponin T isoforms. J Biol Chem 262:4059–4064.

    PubMed  CAS  Google Scholar 

  38. McAuliffe JJ, Gao L, Solaro RJ. 1990. Changes in myofibrillar activation and troponin C Ca2+ binding associated with troponin T isoform switching in developing rabbit heart. Circ Res 66:1204–1216.

    PubMed  CAS  Google Scholar 

  39. Nassar R, Malouf NN, Kelly MB, Oakley AE, Anderson PAW. 1991. Force-pCa relation and troponin T isoforms of rabbit myocardium. Circ Res 69:1470–1475.

    PubMed  CAS  Google Scholar 

  40. Saggin L, Gorza L, Ausoni S, Schiaffino S. 1989. Troponin I switching in the developing heart. J Biol Chem 27:16299–16302.

    Google Scholar 

  41. Guo X, Wattanapermpool J, Palmiter KA, Murphy AM, Solaro RJ. 1994. Mutagenesis of cardiac troponin I. Role of the unique NH2— terminal peptide in myofilament activation. J Biol Chem 269:15210–15216.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Malhotra, A., Straceski, A.J., Lopez, M.C., Nakouzi, A. (1996). Abnormalities in Cardiac Contractile Proteins and Cardiac Dysfunction. In: Dhalla, N.S., Singal, P.K., Takeda, N., Beamish, R.E. (eds) Pathophysiology of Heart Failure. Developments in Cardiovascular Medicine, vol 168. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1235-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1235-2_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8525-0

  • Online ISBN: 978-1-4613-1235-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics