Abnormalities in Cardiac Contractile Proteins and Cardiac Dysfunction

  • Ashwani Malhotra
  • Anthony J. Straceski
  • M. Cecilia Lopez
  • Antonio Nakouzi
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 168)


Multiple changes occur in the cardiac contractile protein assembly that contribute in concert to altered contractile performance in different pathologic states. It has been shown that cardiac myosin in some species exists in three isoenzymic forms and that these may vary depending on the animal’s age, species, and physiologic or pathologic state [1]. Isoenzymic changes in myosin can account for the changes in ATPase activity observed in a variety of models of cardiac hypertrophy [2]. A great deal of work in cardiac hypertrophy and failure has focused upon alterations in myosin ATPase activity and isoenzymes. Abnormalities in myofibrillar dose-response curves have been observed in experimental diabetic cardiomyopathy [3,4], pressure induced overload with and without congestive heart failure, ischemic cardiomyopathy, and idiopathic cardiomyopathy [5,6]. However, alterations in myosin have not been observed in humans. Thus, some component or components in the myofibrillar assembly other than myosin must be responsible for the decrement in cardiac funcition associated with heart disease in humans.


ATPase Activity Contractile Dysfunction Cardiac Myosin Myofibrillar ATPase Myosin ATPase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schwartz K, Lecarpentier Y, Martin JL, Lompre AM, Mercadier JJ, Swynghedauw B. 1981. Myosin isoenzyme distribution correlated with speed of myocardial contraction. J Mol Cell Cardiol 13:1071–1075.PubMedCrossRefGoogle Scholar
  2. 2.
    Mercadier JJ, Lompre AM, Wisnewsky C, Samuel JL, Bervovici J, Swynghedauw B, Schwartz K. 1981. Myosin isoenzymic changes in several models of rat cardiac hypertrophy. Circ Res 49:525–532.PubMedGoogle Scholar
  3. 3.
    Dhalla NS, Sulakhe DV, Fedelesova M, Yates JC. 1974. Molecular abnormalities in cardiomyopathy. Adv Cardiol 13:282–300.PubMedGoogle Scholar
  4. 4.
    Pierce GN, Dhalla NS. 1981. Cardiac myofibrillar ATPase activity in diabetic rats. J Mol Cell Cardiol 13:1063–1069.PubMedCrossRefGoogle Scholar
  5. 5.
    Alpert NR, Gordon MS. 1962. Myofibrillar adenosine triphosphatase activity in congestive heart failure. Am J Physiol 20:940–946.Google Scholar
  6. 6.
    Pagani ED, Alonsi AA, Grant AM, Older TM, Dziuban SW, Allen PD. 1988. Changes in myofibrillar content and Mg2+-ATPase activity in ventricular tissues from patients with heart failure caused by coronary artery disease, cardiomyopathy, or mitral valve insufficiency. Circ Res 63:380–385.PubMedGoogle Scholar
  7. 7.
    Malhotra A, Karell M, Scheuer J. 1985. Multiple cardiac contractile protein abnormalities in myopathic Syrian hamsters. J Mol Cell Cardiol 17:95–107.PubMedCrossRefGoogle Scholar
  8. 8.
    Malhotra A, Penpargkul S, Fein FS, Sonnenblick EH, Scheuer J. 1981. The effect of streptozotocin induced diabetes in rats on cardiac contractile proteins. Circ Res 49:1243–1250.PubMedGoogle Scholar
  9. 9.
    Spudich JA, Watt S. 1971. The regulation of rabbit skeletal muscle contraction. J Biol Chem 246:4866–4871.PubMedGoogle Scholar
  10. 10.
    SolaroJR, Pang D, Briggs N. 1971. The purification of cardiac myofibrils with Triton X-100. Biochem Biophys Acta 245:259–262.PubMedCrossRefGoogle Scholar
  11. 11.
    Malhotra A. 1990. Regulatory proteins in hamster cardiomyopathy. Circ Res 66:1302–1309.PubMedGoogle Scholar
  12. 12.
    Malhotra A, Scheuer J. 1990. Troponin-tropomyosin abnormalities in hamster cardiomyopathy. J Clin Invest 86:286–292.PubMedCrossRefGoogle Scholar
  13. 13.
    Guan KL, Dixon JE. 1991. Eukaryotic proteins expressed in Escherichia coli: an improved thrombin cleavage and purification procedure of fusion proteins with glutathione-S-transferase. Anal Biochem 192:262–267.PubMedCrossRefGoogle Scholar
  14. 14.
    Laemmli UK. 1970. Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227:680–685.PubMedCrossRefGoogle Scholar
  15. 15.
    Towbin H, Staehelin T, Gordon J. 1979. Electrophoretic transfer of proteins from Polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci 76:4350–4354.PubMedCrossRefGoogle Scholar
  16. 16.
    Potter JD. 1982. Preparation of troponin and its subunits. Methods Enzymol 85:241–263.PubMedCrossRefGoogle Scholar
  17. 17.
    Tobacman LS, Lee R. 1987. Isolation and functional comparison of bovine cardiac troponin T isoforms. J Biol Chem 262:4059–4064.PubMedGoogle Scholar
  18. 18.
    Holroyde MJ, Howe E, Solaro RJ. 1979. Modification of calcium requirements for activation of cardiac myofibrillar ATPase by cyclic AMP dependent phosphorylation. Biochim Biophys Acta 586:63–69.Google Scholar
  19. 19.
    Zak B, Epstein E, Baginski ES. 1977. Determination of liver microsomal glucose 6-phosphatase. Ann Clin Lab Sci 7:169–177.PubMedGoogle Scholar
  20. 20.
    Fabiato A, Fabiato F. 1979. Calculated program for computing the composition of the solutions containing multiple metals and ligands used for the experiments in skinned muscle cells. J Physiol (Paris) 75:463–505.Google Scholar
  21. 21.
    Zar JH. 1974. Biostatistical Analysis. Prentice Hall: Englewood Cliffs, NJ, pp. 151–155.Google Scholar
  22. 22.
    Anversa P, Li P, Malhotra A, Zhang X, Herman MV, Capasso JM. 1993. Effects of hypertension and coronary artery constriction on ventricular function, myocardial morphology and cardiac contractile proteins in rats. Am J Physiol 265:8713–8724.Google Scholar
  23. 23.
    Capasso JM, Malhotra A, Peng L, Zhang X, Scheuer J, Anversa P. 1992. Chronic non-occlusive coronary artery constriction impairs ventricular function, myocardial structure, and cardiac contractile protein enzyme activity in rats. Circ Res 70:148–162.PubMedGoogle Scholar
  24. 24.
    Malhotra A, Siri FM, Aronson R. 1992. Cardiac contractile proteins in hypertrophied and failing guinea pig hearts. Cardiovasc Res 26:153–161.PubMedCrossRefGoogle Scholar
  25. 25.
    Geenen DL, Malhotra A. 1991. Ventricular function and contractile proteins in the infarcted rat heart exposed to chronic pressure overload. Cardiovasc Res 25:330–336.PubMedCrossRefGoogle Scholar
  26. 26.
    Malhotra A, Fein FS, Lopez MC. 1991. Regulatory proteins (Troponin-Tropomyosin) in diabetic cardiomyopathy. Biophys J 59:587a.Google Scholar
  27. 27.
    Fein FS, Cho S, Malhotra A, Akella J, Vanhoeven KH, Sonnenblick EH, Factor SM. 1991. Beneficial effects of diltiazem on the natural history of hypertensive-diabetic cardiomyopathy in rats. J Am Coll Cardiol 18:1406–1417.PubMedCrossRefGoogle Scholar
  28. 28.
    Dillmann WH. 1982. Influence of thyroid hormone administration on myosin ATPase activity and myosin isoenzyme distribution in the hearts of diabetic rats. Metabolism 31:199–204.PubMedCrossRefGoogle Scholar
  29. 29.
    Schachat FH, Bronson DD, McDonald OB. 1985. Heterogeneity of contractile proteins: a continuum of troponin-tropomyosin expression in mammalian skeletal muscle. J Biol Chem 260:1108–1113.PubMedGoogle Scholar
  30. 30.
    Cole HA, Perry SV. 1975. The phosphorylation of troponin-I from cardiac muscle. Biochem J 149:525–533.PubMedGoogle Scholar
  31. 31.
    Roberston SP, Johnson JD, Holriode MJ, Kranias EC, Potter JD, Solar RJ. 1982. The effect of troponin-I phosphorylation on the calcium binding properties of the Ca2+ regulatory site of bovine cardiac troponin. J Biol Chem 257:260–263.Google Scholar
  32. 32.
    Nadal-Ginard B, Mahdavi V. 1989. Molecular basis of cardiac performance. J Clin Invest 84:1693–1700.PubMedCrossRefGoogle Scholar
  33. 33.
    Cummins B, Russell GJ, Cummins P. 1991. A monoclonal antibody that distinguishes phospho and dephosphorylated forms of cardiac troponin-I. Biochem Soc Trans 19: 1615–1619.Google Scholar
  34. 34.
    Noland Jr, Kuo JF. 1991. Protein kinase C-mediated phosphorylation of cardiac troponin I or troponin T inhibits Ca2+-stimulated actomyosin Mg ATPase activity. J Biol Chem 266:4974–4978.PubMedGoogle Scholar
  35. 35.
    Venema RC, Kuo JF. 1993. Protein kinase C-mediated phosphorylation of tropnin of myofibrillar actomyosin Mg ATPase. J Biol Chem 268:2705–2711.PubMedGoogle Scholar
  36. 36.
    Strauss JD, Zeugner C, Van Eyk JE, Bletz M, Troscka M, Ruegg JC. 1992. Troponin replacement in permeabilized cardiac muscle. FEB S Lett 310:229–234.CrossRefGoogle Scholar
  37. 37.
    Tobacman LS, Lee R. 1987. Isolation and functional comparison of bovine cardiac troponin T isoforms. J Biol Chem 262:4059–4064.PubMedGoogle Scholar
  38. 38.
    McAuliffe JJ, Gao L, Solaro RJ. 1990. Changes in myofibrillar activation and troponin C Ca2+ binding associated with troponin T isoform switching in developing rabbit heart. Circ Res 66:1204–1216.PubMedGoogle Scholar
  39. 39.
    Nassar R, Malouf NN, Kelly MB, Oakley AE, Anderson PAW. 1991. Force-pCa relation and troponin T isoforms of rabbit myocardium. Circ Res 69:1470–1475.PubMedGoogle Scholar
  40. 40.
    Saggin L, Gorza L, Ausoni S, Schiaffino S. 1989. Troponin I switching in the developing heart. J Biol Chem 27:16299–16302.Google Scholar
  41. 41.
    Guo X, Wattanapermpool J, Palmiter KA, Murphy AM, Solaro RJ. 1994. Mutagenesis of cardiac troponin I. Role of the unique NH2— terminal peptide in myofilament activation. J Biol Chem 269:15210–15216.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Ashwani Malhotra
  • Anthony J. Straceski
  • M. Cecilia Lopez
  • Antonio Nakouzi

There are no affiliations available

Personalised recommendations