Skip to main content

Initial Changes in β-Adrenergic Receptor Function during Development of Rapid Ventricular Pacing-Induced Heart Failure

  • Chapter
Pathophysiology of Heart Failure

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 168))

  • 160 Accesses

Abstract

Current knowledge of the pathogenesis of myocardial failure is derived mainly from studies of chronic or end-stage failing hearts. However, the mechanisms responsible for early changes in contractile function prior to the onset of severe congestive heart failure and the accompanying complications such as fibrosis might be more important, especially for creating therapeutic strategies to reverse the process of heart failure. The canine model of rapid pacing-induced heart failure is ideal for these studies because there is a progressive impairment in cardiac function, with initial cardiac dysfunction prior to development of a large dilated heart and severe congestive heart failure [1–6]. Since this occurs in the absence of significant hypertrophy or fibrosis, it makes the interpretation of data less complicated. This model of pacing-induced failure is also characterized by decreased responsiveness to β-adrenergic receptor stimulation, as seen with chronic human heart failure [7–8]. Furthermore, this action can be observed early in the cardiac dysfunction stage. Therefore, the goal of this chapter is to review data from our laboratory concerning the early changes in the β-adrenergic-receptor-G-protein-adenylyl-cyclase signal transduction system induced by rapid ventricular pacing prior to the onset of heart failure [1–3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kiuchi K, Shannon RP, Komamura K, Cohen DJ, Bianchi C, Homcy CJ, Vatner SF, Vatner DE. 1993. Myocardial β-adrenergic receptor function during the development of pacing-induced heart failure. J Clin Invest 91:907–914.

    Article  PubMed  CAS  Google Scholar 

  2. Vatner DE, Sato N, Kiuchi K, Shannon RP, Vatner SF. 1994. Decrease in myocardial ryanodine receptors and altered excitation-contraction coupling early in the development of heart failure. Circulation 90:1423–1430.

    PubMed  CAS  Google Scholar 

  3. Vatner DE. 1995. Abnormalities in β-adrenergic signal transduction with myocardial decompensation and failure. In Hori M, Maruyama Y, Reneman RS (eds.), Cardiac Adaption and Failure. Springer-Verlag: Tokyo.

    Google Scholar 

  4. Perreault CL, Shannon RP, Komamura K, Vatner SF, Morgan JP. 1992. Abnormalities in intracellular calcium regulation and contractile function in myocardium from dogs with pacing-induced heart failure. J Clin Invest 89:932–938.

    Article  PubMed  CAS  Google Scholar 

  5. Marzo KP, Frey MJ, Wilson JR, Liang BT, Manning DR, Lanoce V, Molinoff PB. 1991. β-adrenergic receptor-G protein-adenylate cyclase complex in experimental canine congestive heart failure produced by rapid ventricular pacing. Circ Res 69:1546–1556.

    PubMed  CAS  Google Scholar 

  6. Shannon RP, Stambler BS, Komamura K, Vatner DE, Vatner SF. 1991. Contractile responses to cAMP dependent stimuli in conscious dogs with pacing-induced heart failure. Clin Res 39:346A (abstract).

    Google Scholar 

  7. Bristow MR, Ginsburg R, Umans V, Fowler M, Minobe W, Rasmusen R, Zera P, Menlove R, Shah P, Jamieson S, Stinson EB. 1986. β1-adrenergic and β2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective β1-receptor down-regulation in heart failure. Circ Res 59:297–309.

    PubMed  CAS  Google Scholar 

  8. Brodde O-E, Zerkowski H-R, Doetsch N, Motomura S, Khamssi M, Michel MC. 1989. Myocardial β-adrenergic changes in heart failure: concomitant reduction in β1 and β2-adrenergic function related to the degree of heart failure in patients with mitral valve disease. J Am Cardiol 14:323–331.

    Article  CAS  Google Scholar 

  9. Munson PJ, Rodbard D. 1980. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem 107:220–239.

    Article  PubMed  CAS  Google Scholar 

  10. Covell JW, Chidsey CA, Braunwald E. 1966. Reduction of the cardiac response to postganglionic sympathetic nerve stimulation in experimental heart failure. Circ Res 19:51–56.

    Google Scholar 

  11. Thomas JA, Marks BH. 1978. Plasma norepinephrine in congestive heart failure. Am J Cardiol 41:233–243.

    Article  PubMed  CAS  Google Scholar 

  12. Cohn JN, Levine TB, Olivari MT, Garberg V, Lubra D, Francis GS, Simon AB, Rector T. 1984. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. New Engl J Med 311:819–823.

    Article  PubMed  CAS  Google Scholar 

  13. Daly PA, Sole MJ. 1990. Myocardial catecholamines and the pathophysiology of heart failure. Circulation 82 (Suppl I): I-35–I-43.

    CAS  Google Scholar 

  14. Chidsey CA, Braunwald E, Morrow AG. 1965. Catecholamine excretion and cardiac stores of norepinephrine in congestive heart failure. Am J Med 39:442–451.

    Article  PubMed  CAS  Google Scholar 

  15. Denniss AR, Marsh JD, Quigg RJ, Gordon JB, Colucci WS. 1989. β-adrenergic number and adenylate cyclase function in denervated transplanted and cardiomyopathic human hearts. Circulation 79:1028–1034.

    Article  PubMed  CAS  Google Scholar 

  16. Vago T, Bevilacqua M, Norbiato G, Baldi G, Chebat E, Bertora P, Baroldi G, Accinni R. 1989. Identification of (Xi-adrenergic receptors on sarcolemma from normal subjects and patients with idiopathic dilated cardiomyopathy: characteristics and linkage to GTP-binding protein. Circ Res 64:474–481.

    PubMed  CAS  Google Scholar 

  17. Harden TK. 1983. Agonist-induced desensitization of the β-adrenergic receptor-linked adenylate cyclase. Pharmacol Rev 35(l):5–32.

    PubMed  CAS  Google Scholar 

  18. Sibley DR, Lefkowitz RJ. 1985. Molecular mechanisms of receptor desensitization using the β-adrenergic receptor-coupled adenylate cyclase system as a model. Nature 317:124–129.

    Article  PubMed  CAS  Google Scholar 

  19. Benovic JL, Bouvier M, Caron MG, Lefkowitz RJ. 1988. Regulation of adenylate cyclase-coupled β-adrenergic receptor-coupled adenylate cyclase system as a model. Nature 317:124–129.

    Google Scholar 

  20. Su Y-F, Harden TK, Perkins JP. 1980. Catecholamine-specific desensitization of adenylate cyclase: evidence for multistep process. J Biol Chem 255:7410–7419.

    PubMed  CAS  Google Scholar 

  21. Ishikawa Y, Sorota S, Kiuchi K, Shannon RP, Komamura K, Katsushika S, Vatner DE, Vatner SF, Homey CJ. 1994. Downregulation of adenylylcyclase types V and VI mRNA levels in pacing-induced heart failure in dogs. J Clin Invest 93:2224–2229.

    Article  PubMed  CAS  Google Scholar 

  22. Manalan AS, Besch HR Jr, Watanabe AM. 1981. Characterization of [3H](±)Carazolol binding to β-adrenergic receptors: application study of β-adrenergic receptor subtypes in canine ventricular myocardium and lung. Circ Res 49:326–336.

    PubMed  CAS  Google Scholar 

  23. DeLean A, Stadel JM, Lefkowitz RJ. 1980. A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled β-adrenergic receptor. J Biol Chem 255:7108–7117.

    CAS  Google Scholar 

  24. Vatner DE, Vatner SF, Fujii AM, Homey CJ. 1985. Loss of high affinity cardiac beta adrenergic receptors in dogs with heart failure. J Clin Invest 76:2259–2264.

    Article  PubMed  CAS  Google Scholar 

  25. Hammond HK, Roth DA, Insel PA, Ford CE, White FC, Maisel AS, Ziegler MG, Bloor CM. 1992. Myocardial β-adrenergic receptor expression and signal transduction after chronic volume-overload hypertrophy and circulatory congestion. Circulation 85:269–280.

    PubMed  CAS  Google Scholar 

  26. Fowler MB, Laser JA, Hopkins GL, Minobe W, Bristow MR. 1986. Assessment of the β-adrenergic receptor pathway in the intact failing human heart: progressive receptor down-regulation and subsensitivity to agonist response. Circulation 74:1290–1302.

    Article  PubMed  CAS  Google Scholar 

  27. Feldman AM, Cates AE, Veazey WB, Harshberger RE, Bristow MR, Baughman KL, Baumgartner WA, Van Dop C. 1988. Increase of the 40,000 mol wt pertussis toxin substrate (G-protein) in the failing human heart. J Clin Invest 82:189–197.

    Article  PubMed  CAS  Google Scholar 

  28. Calderone A, Bouvier M, Li K, Juneau C, Champlain J, Rouleau J. 1991. Dysfunction of the β- and α-adrenergic systems in a model of congestive heart failure: the pacing-overdrive dog. Circ Res 69:332–343.

    PubMed  CAS  Google Scholar 

  29. Bohm M, Gierschik P, Jakobs K-H, Pierske B, Schnabel P, Ungerer M, Erdmann E. 1990. Increases of Gia in human hearts with dilated but not ischemic cardiomyopathy. Circulation 82:1249–1265.

    Article  PubMed  CAS  Google Scholar 

  30. Eschenhagen T, Mende U, Nose M, Schmitz W, Scholz H, Haverich A, Hirt S, Doring V, Kalmar P, Hoppner W, Seitz H-J. 1992. Increased messenger RNA level of the inhibitory G protein a subunit Gia−2 in human end-stage heart failure. Circ Res 70:688–696.

    PubMed  CAS  Google Scholar 

  31. Holmberg SRM, Williams AJ. 1990. The cardiac sarcoplasmic reticulum calcium-release channel: modulation of ryanodine binding and single-channel activity. Biochim Biophys Acta 1022:187–193.

    Article  PubMed  CAS  Google Scholar 

  32. Anderson K, Lai FA, Liu Q-Y, Rousseau E, Erickson HP, Meissner G. 1989. Structural and functional characterization of the purified cardiac ryanodine receptor-Ca2+ release channel complex. J Biol Chem 264:1329–1335.

    PubMed  CAS  Google Scholar 

  33. Rousseau E, Smith JS, Meissner G. 1987. Ryanodine modifies conductance and gating behavior of single Ca2+ release channel. Am J Physiol 253 (Cell Physiol 22):C364–C368.

    PubMed  CAS  Google Scholar 

  34. Inui M, Saito A, Fleischer S. 1987. Isolation of the ryanodine receptor from cardiac sarcoplasmic reticulum and identity with the feet structures. J Biol Chem 262:15637–15642.

    PubMed  CAS  Google Scholar 

  35. Burkhoff D, Yue DT, Franz MR, Hunter WC, Sagawa K. 1984. Mechanical restitution of isolated perfused canine left ventricles. Am J Physiol 246:H8–H16.

    PubMed  CAS  Google Scholar 

  36. Inui M, Wang S, Saito A, Fleischer S. 1988. Characterization of junctional and longitudinal sarcoplasmic reticulum from heart muscle. J Biol Chem 263:10843–10850.

    PubMed  CAS  Google Scholar 

  37. Banijamali HS, Gao W-D, Macintosh BR, ter Keurs HEDJ. 1991. Force-interval relations of twitches and cold contractures in rat cardiac trabeculae. Circ Res 69:937–948.

    PubMed  CAS  Google Scholar 

  38. Cooper IC, Fry CH. 1990. Mechanical restitution in isolated mammalian myocardium: species differences and underlying mechanisms. J Mol Cell Cardiol 22:439–452.

    Article  PubMed  CAS  Google Scholar 

  39. Ezzaher A, Bouanani N, Crozatier B. 1992. Force-frequency relations and response to ryanodine in failing rabbit hearts. Am J Physiol 263.H1710–H1715.

    PubMed  CAS  Google Scholar 

  40. Yue DT, Burkhoff D, Franz MR, Hunter WC, Sagawa K. 1985. Postextrasystolic potentiation of the isolated canine left ventricle. Circ Res 56:340–350.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Vatner, D.E., Kiuchi, K., Shannon, R.P., Vatner, S.F. (1996). Initial Changes in β-Adrenergic Receptor Function during Development of Rapid Ventricular Pacing-Induced Heart Failure. In: Dhalla, N.S., Singal, P.K., Takeda, N., Beamish, R.E. (eds) Pathophysiology of Heart Failure. Developments in Cardiovascular Medicine, vol 168. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1235-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1235-2_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8525-0

  • Online ISBN: 978-1-4613-1235-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics