Skip to main content

Calreticulin, a Multifunctional Ca2+ Binding Protein of Smooth Muscle Sarcoplasmic Reticulum Membranes

  • Chapter
Pathophysiology of Heart Failure

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 168))

  • 163 Accesses

Abstract

Ca2+ is a second messenger that controls a wide variety of cellular functions, including the regulation of metabolic pathways; the synthesis and release of hormones and neurotransmitters; muscle and nonmuscle motility; lipid and carbohydrate metabolism; apoptosis; and mitosis [1]. Because of its multiple action, there is a stringent requirement for the maintenance of cytosolic Ca2+ at submicromolar concentrations. This is achieved by a system of Ca2+-transport and storage pathways that includes Ca2+-buffering proteins in the cytosol and in the lumen of intracellular storage compartments such as endoplasmic reticulum (ER) in nonmuscle cells and sarcoplasmic reticulum (SR) in muscle cells. In nonmuscle ER, there are several Ca2+ binding proteins, of which a major Ca2+ binding protein is calreticulin [2–5]. Calreticulin binds Ca2+ with both high affinity/low capacity (K d = ~1 µM, B max = 1 mole of Ca2+/mole of protein) and low affinity/high capacity (K d = ~250 µM, B max = 25 moles of Ca2+/mole of protein) [6,7]. Given this high binding capacity, it is likely that calreticulin functions as a Ca2+ storage protein in the lumen of the SR/ER [4], and therefore likely that calreticulin plays an important role in the control of cytoplasmic Ca2+ concentrations. In cardiac and skeletal muscle SR membranes, the major Ca2+-binding storage/ protein is calsequestrin [3,8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carafoli E. 1987. Intracellular calcium homeostasis. Annu Rev Biochem 56:395–433.

    Article  PubMed  CAS  Google Scholar 

  2. Cala SE, Scott BT, Jones LR. 1990. Intralumenal sarcoplasmic reticulum Ca2+-binding proteins. Semin Cell Biol 1:265–275.

    PubMed  CAS  Google Scholar 

  3. Koch GLE. 1990. The endoplasmic reticulum and calcium storage. BioEssays 12:527–531.

    Article  PubMed  CAS  Google Scholar 

  4. Michalak M, Milner RE, Burns K, Opas M. 1992. Calreticulin. Biochem J 285:681–692.

    CAS  Google Scholar 

  5. Milner RE, Famulski KS, Michalak M. 1992. Calcium binding proteins in the sarcoplasmic/ endoplasmic reticulum of muscle and nonmuscle cells. Mol Cell Biochem 112:1–13.

    Article  PubMed  CAS  Google Scholar 

  6. Ostwald TJ, MacLennan DH. 1974. Isolation of a high affinity calcium binding protein from sarcoplasmic reticulum. J Biol Chem 249:974–979.

    PubMed  CAS  Google Scholar 

  7. Baksh S, Michalak M. 1991. Expression of calreticulin in Escherichia coli and identification of its Ca2+ binding domains. J Biol Chem 266:21458–21465.

    PubMed  CAS  Google Scholar 

  8. MacLennan DH, Campbell KP, Reithmeier RAF. 1983. Calsequestrin. In Cheng WY (ed.) Calcium and Cell Function, vol. 4. Academic Press: Orlando, FL, pp. 151–173.

    Google Scholar 

  9. Burns K, Duggan B, Atkinson EA, Famulski KS, Nemer M, Bleackley RC, Michalak M. 1994. Modulation of gene expression by calreticulin binding to the glucocorticoid receptor. Nature 367:476–480.

    Article  PubMed  CAS  Google Scholar 

  10. Burns K, Atkinson EA, Bleackley RC, Michalak M. 1994. Calreticulin: from Ca2+-binding to control of gene expression. Trends Cell Biol 4:152–154.

    Article  PubMed  CAS  Google Scholar 

  11. Dedhar S, Rennie PS, Shago M, Hagesteijn C-YL, Filmus J, Hawley RG, Bruchovsky N, Cheng H, Matusik RJ, Giguere V 1994. Inhibition of nuclear hormone receptor activity by calreticulin. Nature 367:480–483.

    Article  PubMed  CAS  Google Scholar 

  12. Nigam SK, Goldberg AL, Ho S, Rohde MF, Bush KR, Sherman MY. 1994. A set of endoplamic reticulum proteins possessing properties of molecular chaperones includes Ca2+-binding proteins and members of the thioredoxin superfamily. J Biol Chem 269:1744–1749.

    PubMed  CAS  Google Scholar 

  13. Burns K, Helgason CD, Bleackley RC, Michalak M. 1992. Calreticulin in T-lymphocytes: identification of calreticulin in T-lymphocytes and demonstration that activation of T cells correlates with increased levels of calreticulin mRNA and protein. J Biol Chem 267:19039–19042.

    PubMed  CAS  Google Scholar 

  14. Dupuis M, Schaerer E, Krause KH. 1993. The calcium binding protein calreticulin is a major constituent of lytic granules in cytolytic T lymphocytes. J Exp Med 177:1–7.

    Article  PubMed  CAS  Google Scholar 

  15. Milner RE, Baksh S, Shemanko C, Carpenter MR, Smilie L, Vance JE, Opas M, Michalak M. 1991. Calreticulin, and not calsequestrin, is the major calcium binding protein of smooth muscle sarcoplasmic reticulum and liver endoplasmic reticulum. J Biol Chem 266:7155–7165.

    PubMed  CAS  Google Scholar 

  16. Slupsky JR, Ohnishi M, Carpenter MR, Reithmeier RAF. 1987. Characterization of cardiac calsequestrin. Biochemistry 26:6539–6544.

    Article  PubMed  CAS  Google Scholar 

  17. Lowry DH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275.

    PubMed  CAS  Google Scholar 

  18. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277:680–685.

    Article  Google Scholar 

  19. Towbin H, Staehelin T, Gordon J. 1979. Electrophoretic transfer of proteins from Polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sei USA 76:4350–4354.

    Article  CAS  Google Scholar 

  20. Villa A, Podini P, Panzeri MC, Söling HD, Volpe P, Meldolesi J. 1993. The endoplasmic reticulum of smooth muscle: immunocytochemistry of vans deferens fibers reveals specialized subcompartments differently equipped for the control of Ca2+ homeostasis. J Cell Biol 121:1041–1051.

    Article  PubMed  CAS  Google Scholar 

  21. Wuytack F, Raeymaekers L, Verbist J, Jones LR, Casteels R. 1987. Smooth-muscle endoplasmic reticulum contains a cardiac-like form of calsequestrin. Biochem Biophys Acta 899:151–158.

    Article  PubMed  CAS  Google Scholar 

  22. Raeymaekers L, Verbist J, Wuytack F, Plessers L, Casteels R. 1993. Expression of Ca2+ binding proteins of the sarcoplasmic reticulum of striated muscle in the endoplasmic reticulum of pig smooth muscles. Cell Calcium 14:581–589.

    Article  PubMed  CAS  Google Scholar 

  23. Opas M, Dziak E, Fliegel L, Michalak M. 1991. Regulation of expression and intracellular distribution of calreticulin, a major calcium binding protein of non-muscle cells. J Cell Physiol 149:160–171.

    Article  PubMed  CAS  Google Scholar 

  24. Fliegel L, Burns K, MacLennan DH, Reithemeier RAF, Michalak M. 1989. Molecular cloning of the high affinity calcium-binding protein calreticulin of skeletal muscle sarcoplasmic reticulum. J Biol Chem 264:21522–21528.

    PubMed  CAS  Google Scholar 

  25. Smith MJ, Koch GLE. 1989. Multiple zones in the sequence of calreticulin (CRP55, calregulin, HACBP) a major calcium binding ER/SR proteins. EMBO J 8:3581–3586.

    PubMed  CAS  Google Scholar 

  26. Pelham HRB. 1989. Control of protein exit from the endoplasmic reticulum. Annu Rev Cell Biol 5:1–23.

    Article  PubMed  CAS  Google Scholar 

  27. Fliegel L, Ohnishi M, Carpenter MR, Khanna VK, Reithmeier RAF, MacLennan DH. 1987. Amino acid sequence of rabbit fast-twitch skeletal muscle calsequestrin deduced from cDNA and peptide sequenceing. Proc Natl Acad Sei USA 84:1167–1171.

    Article  CAS  Google Scholar 

  28. Scott BT, Simmerman HKB, Collins JH, Nadal-Ginard B, Jones LR. 1988. Complete amino acid sequence of canine cardiac calsequestrin deduced by cDNA cloning. J Biol Chem 263:8958–8964.

    PubMed  CAS  Google Scholar 

  29. Sueyoshi T, McMullen BA, Marnell LL, Clos TWD, Kisiel W. 1991. A new procedure for separation of protein Z, prothrombin fragment 1.2 and calreticulin from human plasma. Thromb Res 63:569–575.

    Article  PubMed  CAS  Google Scholar 

  30. Benedict C, Kuwabara K, Todd G, Ryan J, Michalak M, Eaton D, Stern D. 1993. Calreticulin is a novel antithrombotic agent: blockade of electrically-induced coronary thrombosis in a canine model. Clin Res 41:275A.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Mesaeli, N., Opas, M., Michalak, M. (1996). Calreticulin, a Multifunctional Ca2+ Binding Protein of Smooth Muscle Sarcoplasmic Reticulum Membranes. In: Dhalla, N.S., Singal, P.K., Takeda, N., Beamish, R.E. (eds) Pathophysiology of Heart Failure. Developments in Cardiovascular Medicine, vol 168. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1235-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1235-2_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8525-0

  • Online ISBN: 978-1-4613-1235-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics