Skip to main content

Regulation of Slow Ca2+ Channels of Myocardial Cells by Cyclic Nucleotides and Phosporylation

  • Chapter
Pathophysiology of Heart Failure

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 168))

Abstract

Phosphorylation of ion channels is a means of regulating or modulating the activity of the channels. There is evidence for such regulation of function of Ca2+, K+, and Na+ channels by phosphorylation, and biochemical evidence shows that one or a few sites on the channel proteins can be phosphorylated by various protein kinases. Most of the physiological evidence for modulation of ion channel function by cyclic-nucleotide-dependent phosphorylation is for slow (L-type) Ca2+ channels of cardiac muscle, vascular smooth muscle (VSM), skeletal muscle, and nerve, and for K+ channels (delayed rectifier type) of cardiac muscle and nerve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Trautwein W, Taniguchi J, Noma A. 1982. The effect of intracellular cyclic nucleotides and calcium on the action potential and acetylcholine response of isolated cardiac cells. Pflugers Arch 392:307–314.

    Article  PubMed  CAS  Google Scholar 

  2. Yazawa K, Kameyama M. 1990. Mechanism of receptor-mediated modulation of the delayed outward potassium current in guinea-pig ventricular myocytes. J Physiol 421: 135–150.

    PubMed  CAS  Google Scholar 

  3. DiFrancesco D, Tromba C. 1988. Muscarinic control of the hyperpolarization-activated current (if) in rabbit sino-atrial node myocytes. J Physiol (Lond) 405:493–510.

    CAS  Google Scholar 

  4. Ehara T, Ishihara K. 1990. Anion channels activated by adrenaline in cardiac myocytes. Nature 347:284–286.

    Article  PubMed  CAS  Google Scholar 

  5. Sumii K, Munemori M, Miyoshi H, Seyama I. In press. No regulation of Na channel by intracellular signal transduction systems in frog ventricular cells. Am J Physiol.

    Google Scholar 

  6. Ono K, Kiyosue T, Arita M. 1989. Isoproterenol, DBcAMP, and forskolin inhibit cardiac sodium current. Am J Physiol 256:C1131–C1137.

    PubMed  CAS  Google Scholar 

  7. Ono K, Fozzard HA, Nanck DA. 1993. Mechanism of cAMP-dependent modulation of cardiac sodium channel current kinetics. Circ Res 72:807–815.

    PubMed  CAS  Google Scholar 

  8. Matsuda JJ, Lee H, Shibata EF. 1992. Enhancement of rabbit cardiac sodium channels by β-adrenergic stimulation. Circ Res 70:199–207.

    PubMed  CAS  Google Scholar 

  9. Ono K, Trautwein W. 1991. Potentiation by cyclic GMP of β-adrenergic effect on Ca2+ current in guinea-pig ventricular cells. J Physiol 443:387–404.

    PubMed  CAS  Google Scholar 

  10. Tarren FM, Ono K, Noma A, Ehara T. 1991. β-adrenergic and muscarinic regulation of the chloride current in guinea-pig ventricular cells. J Physiol 440:225–241.

    Google Scholar 

  11. Sperelakis N, Schneider J. 1976. A metabolic control mechanism for calcium ion influx that may protect the ventricular myocardial cell. Am J Cardiol 37:1079–1085.

    Article  PubMed  CAS  Google Scholar 

  12. Llinas R, Sugimori D, Hillman E, Cherksey B. 1992. Distribution and functional significance of the P-type, voltage-dependent Ca2+ channels in the mammalian central nervous system. TINS 15:351–355.

    PubMed  CAS  Google Scholar 

  13. Mintz IM, Venema VJ, Swiderek KM, Lee TD, Bean BP, Adams ME. 1992. P-type calcium channels blocked by the spider toxin omega-Aga-IVA. Nature 355:827–829.

    Article  PubMed  CAS  Google Scholar 

  14. Nowycky MC, Fox AP, Tsien RW. 1985. Three types of neuronal calcium channels with different calcium agonist sensitivity. Nature 316:440–443.

    Article  PubMed  CAS  Google Scholar 

  15. Tohse N, Masuda H, Sperelakis N. 1992. Novel isoform of Ca2+ channel in rat fetal cardiomyocytes. J Physiol (Lond) 451:295–306.

    CAS  Google Scholar 

  16. Tohse N, Sperelakis N. 1990. Long-lasting openings of single slow (L-type) Ca2+ channels in chick embryonic heart cells. Am J Physiol 259:H639–H642.

    PubMed  CAS  Google Scholar 

  17. Masuda H, Sumii K, Sperelakis N. 1995. Long openings of calcium channels in fetal rat ventricular cardiomyocytes. Pflugers Arch Eur J Physiol 429:595–597.

    Article  CAS  Google Scholar 

  18. Tohse N, Meszaros J, Sperelakis N. 1992. Developmental changes in long-opening behavior of L-type Ca2+ channels in embryonic chick heart cells. Circ Res 71:376–384.

    PubMed  CAS  Google Scholar 

  19. Tohse N, Conforti L, Sperelakis N. 1991. Bay K 8644 enhances Ca2+ channel activities in embryonic chick heart cells without prolongation of open times. Eur J Pharmacol 203:307–310.

    Article  PubMed  CAS  Google Scholar 

  20. Masuda H, Sperelakis N. In press. Developmental changes of β-adrenergic and muscarinic modulations of Ca2+ currents in fetal and neonatal ventricular cardiomyocytes of rat. Reproduction, Fertility and Development.

    Google Scholar 

  21. Kojima M, Sperelakis N, Sada H. 1990. Ontogenesis of transmembrane signaling systems for control of cardiac Ca2+ channels (review article). J Devel Physiol 14:181–219.

    CAS  Google Scholar 

  22. Shigenobu K, Sperelakis N. 1972. Ca2+ current channels induced by catecholamines in chick embryonic hearts whose fast Na+ channels are blocked by tetrodotoxin or elevated K+. Circ Res 31:932–952.

    PubMed  CAS  Google Scholar 

  23. Tsien RW, Giles W, Greengard P. 1972. Cyclic AMP mediates the action of adrenaline on the action potential plateau of cardiac Purkinje fibers. Nature 240:181–183.

    CAS  Google Scholar 

  24. Reuter H, Scholz H. 1977. The regulation of the calcium conductance of cardiac muscle by adrenaline. J Physiol (Lond) 264:49–62.

    CAS  Google Scholar 

  25. Wahler GM, Sperelakis N. 1985. Intracellular injection of cyclic GMP depresses cardiac slow action potentials. J Cyclic Nucleo Prot Phos Res 10:83–95.

    CAS  Google Scholar 

  26. Vogel S, Sperelakis N. 1981. Induction of slow action potentials microiontophoresis of cyclic AMP into heart cells. J Mol Cell Cardiol 13:51–64.

    Article  PubMed  CAS  Google Scholar 

  27. Li T, Sperelakis N. 1983. Stimulation of slow action potentials in guinea pig papillary muscle cells by intracellular injection of cAMP, Gpp(NH)p, and cholera toxin. Circ Res 52:111–117.

    PubMed  CAS  Google Scholar 

  28. Bkaily G, Sperelakis N. 1985. Injection of cyclic GMP into heart cells blocks the slow action potentials. Am J Physiol (Heart Circ Physiol) 248:H745–H749.

    CAS  Google Scholar 

  29. Irisawa H, Kokobun S. 1983. Modulation by intracellular ATP and cyclic AMP of the slow inward current in isolated single ventricular cells of the guinea-pig. J Physiol 338:321–327.

    PubMed  CAS  Google Scholar 

  30. Nargeot J, Nerbonne JM, Engels J, Lester HA. 1983. Time course of the increase in the myocardial slow inward current after a photochemically generated concentration jump of intracellular cAMP. Proc Natl Acad Sci 80:2395–2399.

    Article  PubMed  CAS  Google Scholar 

  31. Josephson I, Sperelakis N. 1978. 5′-Guanylimidodiphosphate stimulation of slow Ca2+ current in myocardial cells. J Mol Cell Cardiol 10:1157–1166.

    Article  PubMed  Google Scholar 

  32. Cachelin AB, dePeyer JE, Kokubun S, Reuter H. 1983. Ca2+ channel modulation by 8-bromo-cyclic AMP in culture heart cells. Nature 304:462–464.

    Article  PubMed  CAS  Google Scholar 

  33. Trautwein W, Hoffman F. 1983. Activation of calcium current by injection of cAMP and catalytic subunit of cAMP-dependent protein kinase. Proc Int Union Physiol Sci 15: 75–83.

    Google Scholar 

  34. Bean BP, Nowycky MC, Tsien RW. 1984. β-adrenergic modulation of calcium channels in frog ventricular heart cells. Nature 307:371–375.

    Article  PubMed  CAS  Google Scholar 

  35. Reuter H, Stevens CF, Tsien RW, Yellen G. 1982. Properties of single calcium channels in cardiac cell culture. Nature 297:501–504.

    Article  PubMed  CAS  Google Scholar 

  36. Schneider JA, Sperelakis N. 1974. The demonstration of energy dependence of the isoproterenol-induced transcellular Ca++ current in isolated perfused guinea pig hearts—an explanation for mechanical failure of ischemic myocardium. J Surg Res 16:389–403.

    Article  PubMed  CAS  Google Scholar 

  37. Vogel S, Sperelakis N, Josephson J, Brooker G. 1977. Fluoride stimulation of slow Ca2+ current in cardiac muscle. J Mol Cell Cardiol 9:461–475.

    Article  PubMed  CAS  Google Scholar 

  38. Osterrieder W, Brum G, Hescheler J, Trautwein W, Flockerzi V, Hofmann F. 1982. Injection of subunits of cyclic AMP-dependent protein kinase into cardiac myocytes modulates Ca2+ current. Nature 298:576–578.

    Article  PubMed  CAS  Google Scholar 

  39. Haddad G, Sperelakis N, Bkaily G. 1995. Regulation of calcium slow channels in myocardial cells by cyclic nucleotides and phosphorylation. Mol Cell Biochem 148:89–94.

    Article  PubMed  CAS  Google Scholar 

  40. Bkaily G, Sperelakis N. 1984. Injection of protein kinase inhibitor into cultured heart cells blocks calcium slow channels. Am J Physiol 246:H630–H634.

    PubMed  CAS  Google Scholar 

  41. Kameyama M, Hofmann F, Trautwein W. 1986. On the mechanism of β-adrenergic regulation of the Ca2+ channel in the guinea-pig heart. Pflugers Arch 405:285–293.

    Article  Google Scholar 

  42. Chad JE, Eckert RJ. 1986. An ezymatic mechanism for calcium current inactivation in dialysed Helix neurones. J Physiol 378:31–51.

    PubMed  CAS  Google Scholar 

  43. Hescheler J, Kameyama M, Trautwein W, Mieskes G, Soling HD. 1987. Regulation of the cardiac calcium channel by protein phosphatases. Eur J Biochem 165:261–66.

    Article  PubMed  CAS  Google Scholar 

  44. Hescheler J, Kameyama M, Trautwein W. 1986. On the mechanism of muscarinic inhibition of the cardiac Ca current. Pflugers Arch 407:182–189.

    Article  PubMed  CAS  Google Scholar 

  45. Hescheler J, Mieskes G, Ruegg JC, Takai A, Trautwein W. 1988. Effects of a protein phosphatase inhibitor, okadaic acid, on membrane currents of isolated guinea-pig cardiac myocytes. Pflugers Arch 412:248–252.

    Article  PubMed  CAS  Google Scholar 

  46. Reuter H. 1983. Calcium channel modulation by neurotransmitters, enzymes, and drugs. Nature 301:569–574.

    Article  PubMed  CAS  Google Scholar 

  47. Armstrong D, Eckert R. 1987. Voltage-activated calcium channels that must be phosphory-lated to respond to membrane depolarization. Proc Natl Acad Sci USA 84:2518–2522.

    Article  PubMed  CAS  Google Scholar 

  48. Ohya Y, Sperelakis N. 1989. Modulation of single slow (L-type) calcium channels by intracellular ATP in vascular smooth muscle cells. Pflugers Arch 414:257–264.

    Article  PubMed  CAS  Google Scholar 

  49. Goldberg ND, Haddox MK, Nicol SE, Glass DB, Sanford CH, Kuehl FA Jr, Estensen R. 1975. Biological regulation through opposing influences of cyclic GMP and cyclic AMP: The Yin Yang hypothesis. Adv Cyclic Nucleo Res 5:307–330.

    CAS  Google Scholar 

  50. Nawrath H. 1977. Does cyclic GMP mediate the negative inotropic effect of acetylcholine in the heart? Nature 267:72–74.

    Article  PubMed  CAS  Google Scholar 

  51. Kohlhardt M, Haap K. 1978. 8-Bromo-guanosine-3′, 5′-monophosphate mimics the effect of acetylcholine on slow response action potential and contractile force in mammalian atrial myocardium. J Mol Cell Cardiol 10:573–578.

    Article  PubMed  CAS  Google Scholar 

  52. Mehegan JP, Muir WW, Unverferth DV, Fertel RH, McGuirk SM. 1985. Electrophysiological effects of cyclic GMP on canine cardiac Purkinje fibers. J Cardio vase Pharmacol 7:30–35.

    Article  CAS  Google Scholar 

  53. Wahler GM, Rusch NJ, Sperelakis N. 1990. 8-bromo-cyclic GMP inhibits the calcium channel current in embryonic chick ventricular myocytes. Can J Physiol Pharmacol 68: 531–534.

    Article  PubMed  CAS  Google Scholar 

  54. Tohse N, Sperelakis N. 1991. Cyclic GMP inhibits the activity of single calcium channels in embryonic chick heart cells. Circ Res 69:325–331.

    PubMed  CAS  Google Scholar 

  55. Tohse N, Nakaya H, Takeda Y, Kanno M. 1992. Inhibitory effect of human atrial natriuretic peptide on cardiac L-type Ca channels. Jpn J Pharmacol 58:184P.

    Google Scholar 

  56. Tohse N, Nakaya H, Takeda Y, Kanno M. Submitted. Cyclic GMP-mediated inhibition of L-type Ca2+ channel activity by human natriuretic peptide in rabbit heart cells.

    Google Scholar 

  57. Sperelakis N, Ohya Y. 1991. Regulation of calcium slow channels in vascular smooth muscle cells. In Sperelakis N, Kuriyama H (eds.), Electrophysiology and Ion Channels of Vascular Smooth Muscle and Endothelial Cells. Elsevier: Amsterdam, pp. 27–38.

    Google Scholar 

  58. Sperelakis N, Tohse N, Ohya Y. 1992. Regulation of calcium slow channels in cardiac muscle and vascular smooth muscle. Proceedings of a symposium in Banff, June 27–30, 1991. In Frank GB, Bianchi CP, Ter Keors H (eds.), Excitation-Contraction Coupling in Skeletal, Cardiac, and Smooth Muscle. Plenum Press: New York, pp. 163–187. Also in Adv Exp Med Biol 311:163–187.

    Chapter  Google Scholar 

  59. Ohya Y, Sperelakis N. 1990. Tocolytic agents act on calcium channel current in single smooth muscle cells of pregnant rat uterus. J Pharm Exp Ther 253:580–585.

    CAS  Google Scholar 

  60. Inoue Y, Sperelakis N. 1991. Gestational change in Na+ and Ca2+ channel current densities in rat myometrial smooth muscle cells. Am J Physiol 260.C658-C663.

    PubMed  CAS  Google Scholar 

  61. Kokate TG, Sperelakis N, HeinyJ. 1993. Stimulation of the slow calcium current in bullfrog skeletal muscle fibers by cAMP and cGMP. Am J Physiol 265:C47–C53.

    PubMed  CAS  Google Scholar 

  62. Hartzell HC, Fischmeister R. 1986. Opposite effects of cyclic GMP and cyclic AMP on Ca2+ current in single heart cells. Nature 323:273–275.

    Article  PubMed  CAS  Google Scholar 

  63. Fischmeister R, Hartzell RC. 1987. Cyclic guanosine 3′,5′-monophosphate regulates the calcium current in single cells from frog ventride. J Physiol 387:455–472.

    Google Scholar 

  64. Levi RC, Alloatti G, Fischmeister R. 1989. Cyclic GMP regulates the Ca-channel current in guinea pig ventricular myocytes. Pflugers Arch 413:685–687.

    Article  PubMed  CAS  Google Scholar 

  65. Mery PF, Lohmann SM, Walter U, Fischmeister R. 1991. Ca2+ current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes. Proc Natl Acad Sci 88:1197–1201.

    Article  PubMed  CAS  Google Scholar 

  66. Thakkar J, Tang S, Sperelakis N,, Wahler G. 1988. Inhibition of cardiac slow action potentials by 8-bromo-cyclic GMP occurs independent of changes in cyclic AMP levels. Can J Physiol Pharmacol 66:1092–1095.

    Article  PubMed  CAS  Google Scholar 

  67. Cuppoletti J, Thakkar J, Sperelakis N, Wahler G. (1988). Cardiac sarcolemmal substrate of the cGMP-dependent protein kinase. Membr Biochem 7:135–142.

    Article  CAS  Google Scholar 

  68. George WJ, Poison JB, O’Toole AG, Goldberg ND. 1970. Elevation of guanosine 3′,5′-cyclic phosphate in rat heart after perfusion with acetylcholine. Proc Natl Acad Sci USA 66:398–403.

    Article  PubMed  CAS  Google Scholar 

  69. MacLeod KM, Diamond J. 1986. Effects of the cyclic GMP lowering agent LY83583 on the interaction of carbachol with forskolin in rabbit isolated cardiac preparations. J Pharmacol Exp Ther 238:313–318.

    PubMed  CAS  Google Scholar 

  70. Wahler GM, Sperelakis N. 1986. Cholinergic attenuation of the electrophysiological effects of forskolin. J Cyclic Nucleo Prot Phosph Res 11:1–10.

    CAS  Google Scholar 

  71. Ahmad Z, Green FJ, Subuhi HS, Watanabe AM. 1989. Purification and characterization of an α-l,2-mannosesidase involved in processing asparagine linked oligo-saccharides. J Biol Chem 264:3859–3863.

    PubMed  CAS  Google Scholar 

  72. Freer RJ, Pappano AJ, Peach MJ, Bing KT, McLean MJ, Vogel SM, Sperelakis N. 1976. Mechanism of the positive inotropic effect of angiotensin II on isolated cardiac muscle. Circ Res 39:178–183.

    PubMed  CAS  Google Scholar 

  73. Bruckner R, Scholz H. 1984. Effects of alpha-adrenoceptor stimulation with phenylephrine in the presence of propranolol on force of contraction, slow inward current and cyclic AMP content in the bovine heart. Br J Pharmacol 82:223–232.

    PubMed  CAS  Google Scholar 

  74. Dosemeci A, Dhalla RS, Cohen NM, Lederer WJ, Rogers TB. 1988. Phorbol ester increases calcium current and stimulates the effects of angiotensin II on cultured neonatal rat heart myocytes. Circ Res 62:347.

    PubMed  CAS  Google Scholar 

  75. Tohse N, Kameyama M, Sakiguchi K, Shearman MS, Kanno M. 1990. Protein kinase C activation enhances the delayed rectifier K+ current in guinea-pig heart cells. J Mol Cell Cardiol 22:725–734.

    Article  PubMed  CAS  Google Scholar 

  76. Bkaily G, Sperelakis N. 1986. Calmodulin is required for a full activation of the calcium slow channels in heart cells. J Cyclic Nucleo Prot Phosph Res 11:25–34.

    CAS  Google Scholar 

  77. Yatani A, Codina J, Imoto Y, Reeves JP, Birnbaumer L, Brown AM. 1987. Direct regulation of mammalian cardiac calcium channels by a G Protein. Science 238:1288–1292.

    Article  PubMed  CAS  Google Scholar 

  78. Xiong Z, Sperelakis N, Fenoglio-Preiser C. 1994. Isoproterenol stimulates the calcium channels through G-protein gating in smooth muscle cells from rabbit portal vein. Pflugers Arch Eur J Physiol 428:105–113.

    Article  CAS  Google Scholar 

  79. Xiong Z, Sperelakis N. 1995. Regulation of L-type calcium channels of vascular smooth muscle cells (review articlë. J Mol Cell Cardiol (Silver Jubilee Issue) 27:75–91.

    Article  CAS  Google Scholar 

  80. Xiong Z, Sperelakis N, Fenoglio-Preiser C. 1994. Regulation of L-type calcium channels by cyclic nucleotides and phosphorylation in smooth muscle cells from rabbit portal vein. J Vase Res 31:271–279.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Sperelakis, N., Sumii, K. (1996). Regulation of Slow Ca2+ Channels of Myocardial Cells by Cyclic Nucleotides and Phosporylation. In: Dhalla, N.S., Singal, P.K., Takeda, N., Beamish, R.E. (eds) Pathophysiology of Heart Failure. Developments in Cardiovascular Medicine, vol 168. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1235-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1235-2_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8525-0

  • Online ISBN: 978-1-4613-1235-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics